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Preface

Engineering for future mobility must be inspired by ecology and economy to enable green
and silent vehicles. Current university based education is focusing on classical fields like
mechanical engineering on one side with some aspects of Noise, Vibration & Harshness
(NVH) and LightWeight Design (LWD) or like electrical engineering covering aspects of
Electrification & Hybridisation (H/E) on the other side.

The eLiQuiD project (Best Engineering Training in Electric, Lightweight and Quiet Driv-
ing) aims to bring together early stage researchers and experienced specialists from key play-
ers in academia and industry across Europe covering NVH, LWD and H/E disciplines to form
a broad range of backgrounds. Recent research underlines the strong interaction and shows
the often conflicting demands of these 3 topics.

Consequently, an optimum for future vehicle development requires an interdisciplinary
education in this triangle of topics. eLiQuiD’s focus is to motivate and encourage early
stage researchers for scientific work in the new interdisciplinary research fields NVH+LWD,
LDW+H/E and H/E+NVH. The fellows are trained and supported in their phase of doctoral
thesis to find innovative PhD topics as well as to receive specific education in theoretical and
practical trainings. The education will comprise existing lectures in the partner network as
well as training specifically developed for the interdisciplinary needs.

The eLiQuiD consortium is formed by three organizations, combining leading education
and research institutions as well as an associated partner well established in European auto-
motive R&D to assist in the dissemination and outreach of the eLiQuiD results. Thus the
fellows participate in both the scientific research work and the practical application of new
methods of testing and simulation and they profit from extended international knowledge
after their academic education when starting to work in the industry.

eLiQuiD was funded by the EC as a Marie Curie European Industrial Doctorate under
Grant Agreement 316422 in the Seventh Framework Programme (FP7) and ran over a period
of 4 years (October 2012 – September 2016). The project brought together the Katholieke
Universiteit Leuven (KU Leuven) as academic partner, Virtual Vehicle Research Center (ViF)
as industrial research centre and the European Automotive Research Partners Association
(EARPA) as associated partner and together hosted 4 researchers, drawing together skills and
expertise in a range of different technical approaches. ViF and EARPA brought specific ap-
plications that embed generic difficulties associated with NVH of electrified vehicles, while
KU Leuven brought a diverse range of innovative approaches and the capability of research
training, provision of courses and dissemination to the wider community. Together the con-
sortium developed and promoted research, knowledge and application of NVH analysis and
design techniques within the EU industry.

Near the end of the 4-year eLiQuiD project, each of the 4 Fellows has written a self-
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assessment report. This book collects these public domain reports, providing an insight in
the theoretical development of each of the approaches studied within eLiQuiD and giving an
assessment on their industrial applicability, on open research questions and future challenges.
The authors hope that these reports may help others in tackling the substantial challenges still
existing in NVH assessment of electrified vehicles.

All people involved in the project would like to express their gratitude towards the EC
for the support in the EID eLiQuiD project and the REA (Research Executive Agency) for its
continuous support in managing the project. A special word of thanks goes to Lionel Boillot,
Sergio Mastropierro, Markus Rester and Olivier Delaunoy, the eLiQuiD Project Officers, and
to their colleagues; thank you all for helping us to make eLiQuiD a great success!!

Wim Desmet, Bert Pluymers, Project coordinators
Matteo Kirchner, Early Stage Researcher
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Chapter 1

NVH analysis and optimisation of
lightweight structures
VITTORIO D’ORTONA 1,2,3, BERT PLUYMERS 2,3, EUGÈNE NIJMAN 1,
WIM DESMET 2,3

1 VIRTUAL VEHICLE RESEARCH CENTER
2 KU LEUVEN, DEPARTMENT OF MECHANICAL ENGINEERING
3 MEMBER OF FLANDERS MAKE

1 EXECUTIVE SUMMARY

The use of small reverberant transmission suites, for in-situ Transmission Loss (TL) char-
acterization of panels, has been increasingly implemented in the automotive, railway and
aerospace fields in order to have a good knowledge of their vibro-acoustic behaviour and
reduce the amount of post-treatments in the sound package of vehicles. Compared to the
standards (chambers of 80 m3), the dimensions of these chambers allow for building own
designed testrig, resulting to be practical and fast tools for testing and evaluating the vibro-
acoustic behavior of lightweight panels of common use in the transport industry.

Nevertheless, there is a wide frequency range in which the acoustic field inside the cabin
cannot be considered diffuse. The Schroeder’s frequency is high, and below it a strong vibro-
acousting coupling between the sample and the reverberant acoustic environment might be
present. The achieved noise reduction properties are then affected by the test rig in which
they are measured and cannot be considered as representative for the tested panel’s behavior.
The lack of diffusivity is a common issue for small cabins and, before diffusivity is reached,
it does not allow for a Transmission Loss (TL) investigations that can be comparable with the
one measured via a standrard procedure. This issue can be circumverted by using an indirect
apprach aimed at retrievening first the acoustic mobility of the sample unaffectively from the
acoustic environment in which it is tested, and then numerically predict its response under
the desired acoustic field (e.g. diffuse fiueld, normal incident pressure field, etc).

The first part of the chapter introduces the PMA Soundbox and its main features, together
with a test campaign to investigate the Insertion and Transmission Loss properties of a honey-
comb sandwich panel. The results show that when the field inside the cavity is not diffuse, a
strong vibro-acoustic coupling occurs, affecting the noise reduction properties of the sample.
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In the second part instead, the basis and a numerical validation of the indirect approach to
overtake the coupling problem is described. For the sake of clarity it is important to mention
that both of the sections are based on two conference papers written by the author of this
chapter. The first section refers to [1], while the second one to [2].

2 SOUND TRANSMISSION TESTING AND ANALYSIS OF A HONEYCOMB
SANDWICH PANEL BY MEANS OF A SMALL CABIN

The application of lightweight structures in the automotive and aviation industries has been
increasing to match increasingly ambitious CO2 emission targets. A recent research shows
that lightweight materials already make up 80% of all materials in aviation, and in automo-
tive their use in production will more than double in the next 20 years [3]. The high stiffness
to mass ratio of lightweight structures guarantees energy and mass saving, while keeping
high mechanical performances. Nevertheless, Noise, Vibration and Harshness (NVH) perfor-
mances can be unsatisfactory. Post-treatments are then adopted, like for example the addition
of visco-elastic layers, reducing the originally expected mass gain. In order to avoid or reduce
this side effect, a good a priori knowledge of the vibro-acoustic behavior of lightweight com-
ponents is needed. Both experimental and numerical tools can efficiently be implemented at
this purpose.

Amongst the indicators of the NVH properties, the sound Transmission Loss index (TL)
is used to show the acoustic attenuation properties of a given structure in very well defined
acoustic environments. The procedure for TL measurements, as well as the entire test rig
setup and design, is regulated by international standards (ASTM Standard E90 04 in 2009).
Normally, the test enviroment involves chambers with big volumes in order to minimize the
interaction between the test rig and the tested sample. In fact, the same specimen tested in
different facilities has to theorically show the same behaviour (as far as each of them fulfils
the requirements prescribed in the aforementioned standard).

Typically the test rig consists of two adjacent rooms which can be reverberant or anechoic,
allowing for the following combinations:

• two reverberant rooms (diffuse-field incidence and radiation into a reverberant envi-
ronment, Fig 1.1 on the top-left)

• one reverberant room and one anechoic room (diffuse-field incidence and free-field
radiation, Fig 1.1 on the top-right)

• two anechoic rooms (single-incidence and free-field radiation,Fig 1.1 on the bottom-
right)

• one anechoic room and one reverberant (single-incidence and radiation into a reverber-
ant environment, Fig 1.1 on the bottom-left).

The test sample - of a minimum dimension of 1.2 m (except for the thickness) - is mounted
at the rigid partition wall between the two rooms. In the source room is generated a pres-
sure field that makes the test specimen vibrate. This creates a sound field in the second
room. The Sound Pressure Levels (SPL) in both the source and receiving rooms are recorded
(ASTM Standard E90 04 in 2009) and respectively called Pincident and Ptransmitted .
The TL comes from Eq. 1.1.

TL = 10 ∗ LOG10

(
Pincident

Ptransmitted

)
(1.1)
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Figure 1.1: On the top-left: two reverberant rooms sound TL suite. On the top-right: a
reverberant source room radiating into a free field (anechoic room). On the bottom-left: a
single angle incident source (in anechoic room) radiating into a reverberant room. On the
bottom-right: a single angle incident source (in anechoic room) radiating into a free field
(anechoic room). Lateral view.

Care has to be taken when measuring the pressure field in the reverberant source room,
avoiding direct field effects and cavity resonances (satisfying the hypotheses of field diffusiv-
ity, i.e. uniform sound pressure level and equally probable flow of energy in all directions).
In the case a reverberant receiving room, the same care is also required for the corresponding
field acquisitions, and Eq. 1.1 needs to be corrected according to the Sabines formula [4].
Relying on the hypothesis of diffuse field and/or free field, the procedure for noise reduc-
tion properties identification is straightforward. Nevertheless, it is worth to point out that the
whole facility can be quite demanding and cumbersome. Moreover, the sample dimensions
required by the standards can sometimes result not representative of practical application,
especially for small and medium sized parts.

With the goal to get a faster and more practical tool for testing and analysing noise reduc-
tion properties of lightweight panels of common use in the small sized transport industry, at
KU Leuven was designed a new experimental test rig [5]. The facility, named PMA Sound-
box, is a small reverberant chamber that supports the research and development of innovative
materials and the optimization of lightweight component designs. The PMA Soundbox not
only differs from standard facilities in terms of size; compared to them, indeed, it is also
a multifunctional test setup which can be used for measuring several NVH parameters, i.e.
sound transmission of panels, sound absorption of porous materials, vibration damping and
it can also support material properties identification. On the other hand, the experimental
test procedure does not rely on simplified field assumptions, a more complex pressure field
is present and this has to be taken in account when performing measurements. Hence, in
the low frequency region (below field diffusivity), the experimental identifications are sup-
ported by numerical modelling techniques able to tackle coupled vibro-acoustic problems,
characterized by modally dominated acoustic sub-domains, which are typically encountered
in transport industry.
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The present section is structured in three main parts. First, the design and technical speci-
fications of the PMA Soundbox are breafly described. The second part reports about the tests
carried out for vibro-acoustic studies of the tested panel. These experimental results are com-
pared with numerical simulations. Modal analysis data are used to validate the Finite Element
(FE) model of the sandwich plate. This structural numerical model is coupled to a Boundary
Element (BE) model of the acoustic cabin, in a fully coupled problem, and the numerical
results compared to the experimental measurements. In the last section, the noise reduction
performance measured with the PMA Soundbox is compared to the TL evaluated by means of
standard facility. Ongoing and upcoming studies, aiming at widening the implementation of
the PMA Soundbox in the research field of the vibro-acoustic study of lightweight structures,
are finally given in the last section.

2.1 The PMA Soundbox test rig

The design of the PMA Soundbox test rig is based on a preliminary work carried out on a
smaller setup [6] and consists of a single cabin. The main advantages of this test rig are:

• It is relatively small (only 0.83 m3), moveable and cheap.

• It allows for several kinds of measurements on components of different sizes and thick-
nesses in a wide frequency range ([50 − 20000] Hz), for both airborne and structure-
borne excitation.

• The test window can be enclosed by a flexible component. In this configuration, the
sound Insertion Loss (IL) can be measured.

The IL is defined as the difference in dB between the SPL radiated outside the cabin when
an acoustic source is active inside and no specimen is applied to the cabin (this condition is
called open-window configuration, and the SPL measured is named Popen), and the SPL
radiated when the tested component is mounted (Pclosed).

TL = 10 ∗ LOG10

(
Popen
Pclosed

)
(1.2)

Unlike the TL, the IL not only depends on the NVH properties of the examined structure
but it is also a function of the vibro-acoustic environment in which it is measured, consisting
of both the vibrating element and the acoustic cavity. Although the test procedure is not very
demanding, care is required in the discussion of the sound transmission characteristics of the
test panel, especially in the low frequency region. In fact, till the diffusivity condition inside
the camber is not reached, the modal behaviour of the acoustic subdomain strongly couples
to structural one. In view of this, the PMA Soundbox has been designed in order to get
a uniform distribution of the natural acoustic frequencies, avoiding overlapping frequencies
and uneven gaps between subsequent acoustic natural frequencies. To this purpose, the final
design of the test cabin consists of a non-rectangular parallelepiped volume, in which the
inner walls are not parallel. The global shape is convex [7]. The simplicity of the geometry
and the accuracy of the imposed boundary conditions allow for accurate numerical models,
able to satisfactory predict the observed behaviour over a wide frequency range.

Fig. 1.2 shows the practical realisation of the PMA Soundbox as a five walled reinforced
concrete cabin. The cabin can be enclosed at the front side by a modular partition. Test panels
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of different thickness and in-plane dimensions can be installed using different front partition
walls. All the available front walls are made of aluminium and each of them is 0.035 m thick
(see Fig 1.2.a).

The available test partitions are listed below, sorted by the dimension of the test windows:

• A1 window

• A2 window

• 500 mm x 350 mm window

• A3 window

• A4 window

• Fully closed wall

The total weight of the setup is about 3 tons. A three wheels system allows the rig to be
moved to the desired location. As visible in Fig. 1.2.a), the PMA Soundbox is suspended on
a four air-spring system, required to suppress vibrations coming from the laboratory floor.

(a) (b)

Figure 1.2: (a) A sketch of the vibro-acoustic test rig; (b) Sound intensity measurements [1].

The setup can be equipped with several sensors for acoustical and structural response ac-
quisitions (PP sound intensity probe, free-field and reverberant-field 1⁄2” microphones, light-
weight 1D accelerometers). By means of a full range speaker placed inside the cabin, or of an
electro-dynamic shaker, or an impact hammer, both structure-borne and airborne excitations
measurements can be performed.

2.2 Sound transmission properties detection

In this section, an aluminium honeycomb core sandwich panel, used for space rocket ap-
plications, is described. In order to verify the numerical model of the tested panel, modal
analyses in free and clamped edges conditions have been performed. Then, in collaboration
with the Japanese Aerospace Agency (JAXA), the noise reduction characteristics have been
experimentally and numerically evaluated, by using both the standard test methodology and
the PMA Soundbox.
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2.2.1 The tested honeycomb sandwich panel

The test specimen is a honeycomb sandwich plate of 11.2 mm total thickness. The core is
an AL-3/16-5052T-.001, 10 mm thick with hexagonal regular cells. The top and bottom face
sheets are 0.6 mm thick and made out of AL-5052T. A scheme of the plate is represented in
Fig. 1.3 and the main geometric dimensions are listed in Table 1.1.

Figure 1.3: Geometric configuration of the core of the tested honeycomb sandwich panel [1].

Geometric properties of the test panel mm

tcell: wall thickness 0.034

dcell: cell size 4.76

h: core height 10

ts: surface sheets global thickness 1.2

length along direction of expansion in free edges condition 600

length along double cell wall direction in free edges condition 800

Table 1.1. Geometric properties of the tested honeycomb sandwich panel [1].

2.2.2 Modal Analysis of the specimen

Rowing hammer impact tests have been performed in free and clamped edges conditions.
A test grid has been defined in order to capture the modal shapes up to a maximum of half
wavelengths equal to 4 along the major edge (chosen as y axis) and 3 along the shorter one
(chosen as x axis). The grid is made of 88 input points and three of them have been also
used as output points. Three lightweight accelerometers (pcb 352A24) have been placed
to measure the acceleration signals at these locations. In free edges condition the panel is
suspended using a spring. In free conditions its size is 600 ∗ 800 mm2. Fig. 1.4 shows the
sum of the three measured FRFs up to 1 kHz. In the same figure and the first five experimental
modal shapes are also indicated.

When the sandwich panel is tested with clamped edge conditions, the test surface is re-
duced to an A2 size, e.g. 420 ∗ 594 mm2. In order to better identify the uncoupled structural
natural frequencies of the tested panel, the experimental modal analyses in clamped condition
have been performed in two different configurations:

• The isolated system, consisting only of the front wall and the panel clamped at the test
window
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• The coupled system, having the tested panel clamped to the front wall and mounted on
the PMA Soundbox

Mode 2: 101.2 Hz  

Mode 1: 430.3 Hz  Mode 3: 183.5 Hz  

Mode 4: 185.5 Hz  

Mode 5: 228.9 Hz  

Figure 1.4: Sum of FRFs function recorded on the tested panel (88 points) in free conditions
and first five modal shapes [1].

The sums of the FRFs recorded in the two cases are compared in Fig. cite1.5, where
the first clamped modes are also shown. Considering the measurements performed for the
uncoupled structural system, i.e. whit the front wall resting vertically on the floor and the
honeycomb panel clamped at its the test window, the sum of the FRFs shows the natural fre-
quencies of the clamped panel uneffectively from the presence of the cabin. Some extra peaks
related to the modal behaviour of the front wall itself can be also observed. The amplitude of
these occurrences is however not comparable to that of the natural modes of the panel itself.

When the front wall is mounted on the Soundbox, the influence of the acoustic subdomain
is evident. The acoustic and the structural natural modes couple together and give rise to a
multitude of peaks that are visible in the sum of the FRFs. A shift towards higher frequencies
of the natural coupled frequencies can be observed compared to the isolated system. The
above mentioned shift can be related to the higher stiffness that the system reaches when the
front wall is coupled to the cabin.

Mode (1,1): 430.3 Hz  

Mode (1,2): 734.5 Hz  

Mode (2,1): 917 Hz  Mode (1,3): 1167 Hz  

Figure 1.5: Experimental sum of the FRFs function recorded on the tested panel (88 points)
clamped to the Soundbox (blue curve) and clamped only to the frame (red curve) [1].
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2.2.3 Insertion Loss characterization

The sound IL of the honeycomb panel is measured with the PMA Soundbox. This requires
two measurement sets:

• The measurement of the acoustic power radiated outside the cabin when the test win-
dow is left empty (open-window configuration)

• The same measurement repeated with the honeycomb panel mounted at the front wall
(closed-window)

In both cases, the inner pressure field is excited by a broad range loudspeaker fed by a
white noise voltage signal up to 1600 Hz. The speaker is placed at one of the inner corners
of the cabin in order to excite all the acoustic modes. The acoustic power radiated outside
is obtained from the sound intensity measured over the test area by means of a PP sound
intensity probe. The probe scans an area 10 cm far from the tested panel. The sound intensity
is measured in 70 points. Each of them corresponds to the centre point of an element of the
grid previously used for the modal hammer test with clamped edges condition. The sound
intensity detected by the PP probe at each output point is considered to be the averaged value
over the corresponding elementary surface (Fig. 1.2.b). The third octave band averaged sound
IL is plotted in Fig. 1.6 together with the sound intensity mapping over the acquisition plane
in front of the test area at the frequencies of the first modes. Up to 1 kHz the strong modal
low frequency behaviour is clearly indicated by the presence of well separated dips in the IL.

1st structural mode (1,1) 

2nd structural mode (1,2) 

3rd structural 
mode (2,1) 

4th structural 
mode (1,3) 

Figure 1.6: Experimental sound IL of the honeycomb sandwich panel. A2 size, clamped
edges [1].

2.2.4 Numerical modal analysis in free edges conditions

A 2D multi-layered FE model of the honeycomb sandwich panel is built using MSC.Patran
2012. The size of the edges of each plate element of the model is 5 mm in order to have a
convergence of the modal analysis results up to 3200 Hz. Two plies are used to represent
the homogeneous Aluminium skins, while a layer with 2D orthotropic elastic properties is
placed between them simulating the honeycomb core [8]. The numerical modal analyses
are computed using MSC Nastran 2011.1, while the experimental-numerical correlation is
evaluated using Virtual.Lab Rev11.

The experimental-numerical correlation between the first ten modes of the freely sus-
pended modal analyses is reported in terms of the Modal Assurance Criterion (MAC) in
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Table 1.2. The MAC provides a measure of consistency (degree of linearity) between esti-
mates of a modal vector. It is a quality assurance indicator for experimental modal vectors
that are estimated from measured frequency response functions. The high values of the same
order modal pairs and the small frequency difference (on average less than 5%) indicate a
good correlation between the experimental test and the numerical model. The same model is
used to check the correlation of the clamped panel case.

Mode ID Experimental
Frequency[Hz]

Numerical
Frequency[Hz]

MAC
Value

Error (% of
Experimental
Frequency)

1 77.8 85.5 0.988 9.9

2 101.2 103.3 0.986 2.1

3 183.5 183 0.727 −0.3

4 185.5 198.6 0.935 7

5 228.9 237.6 0.974 3.8

6 284.8 297 0.906 4.3

7 365.2 372.8 0.981 2.1

8 373.7 390 0.978 4.4

9 465.2 473.4 0.984 1.8

10 509.4 528.3 0.974 3.8

Table 1.2: Experimental-numerical modes correlation table for freely suspended modal anal-
yses - 600 ∗ 800 mm2 honeycomb sandwich panel [1].

Mode ID Experimental
Frequency[Hz]

Numerical
Frequency[Hz]

MAC
Value

Error (% of
Experimental
Frequency)

1 430.3 484 0.946 12.5

2 734.5 763.3 0.957 3.9

3 917 1000.5 0.941 9.1

4 1167 1187.4 0.871 1.7

5 1227.6 1228.1 0.945 0.04

Table 1.3: Experimental-numerical modes correlation table for clamped edges condition
modal analyses A2 clamped honeycomb sandwich panel [1].

Similar to the free conditions case, the structural modal behaviour is well predicted by
the multi-layered 2D model for the clamped conditions. Table 1.3 shows the good agreement
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between numerical and experimental mode shapes and natural frequencies for the clamped
configuration.

In order to numerically investigate the IL of the tested panel, a BE model of the cabin
and the clamped honeycomb panel is used. Finite acoustic impedance is imposed at the inner
walls of the cabin. The frequency independent real value of 140k kg/m2s, corresponding to
the acoustic impedance of typical polished concrete [9], is considered in order to take into
account the finite (although small) sound absorption ability of these surfaces. Dissipative
phenomena are also considered in the complex speed of sound, which represents the energy
loss of the sound waves during their travel, more effective especially at higher frequencies.
Structural damping is discarded.

Fig. 1.7 shows the comparison in narrow bands between experimental and numerical IL.
A good prediction can be observed in the whole frequency range, from 150 Hz up to 1600
Hz, except in the band from 400 Hz up to 500 Hz. In this region, the first structural mode of
the clamped panel occurs. The non-perfect clamped boundary conditions realized in practice
have a big influence especially on the lower order modes. The first experimental mode occurs
at 430 Hz, while numerically predicted at 480 Hz. Below 150 Hz the characteristics of the
loudspeaker are too poor to provide a flat input spectrum. The discrepancy between 200
Hz and 250 Hz is due to the non-perfect clamping conditions of the real panel, whereas in
the numerical model the panel is fully clamped. This in combination with a predominantly
stiffness dominated panel response at these frequencies results in a mismatch of the predicted
and measured IL.

Figure 1.7: Experimental and numerical IL (narrow frequency) A2 clamped honeycomb
sandwich panel [1].

2.2.5 Evaluation of the sound Transmission Loss

During the sound IL test, the Sound Pressure Level (SPL) inside the Soundbox can also
be recorded by means of microphones placed inside the cavity. Their positions are chosen in
order to avoid the influence of the interference phenomena close to the cavitys walls (Fig. 1.8).

Considering the closed-cabin configuration, the difference between the internal averaged
SPL and the externally radiated SPL is named here normalized radiated power. Fig. 1.9 shows
the comparison between the experimental normalized acoustic power and the experimental
TL, measured by Japanese Aerospace Agency (JAXA), of the same honeycomb sandwich
panel but with a different size of 700 ∗ 1000 mm2.
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Figure 1.8. Interior view of the Soundbox [1].

Figure 1.9: Normalized radiated power measured at KU Leuven A2 panel (red curve); Stan-
dard TL measured by Japanese Aerospace Agency (JAXA) 700∗1000 mm panel (blue curve)
[1].

The Soundbox reaches a diffuse field above 1600 Hz and, as shown in Fig. 1.9, here there
is a good matching between the two curves, while below this frequency diffusivity is lost in-
side the Soundbox and the acoustic modal loading is becoming apparent, illustrating the value
of the new test rig for vibro-acoustic characterization of panels with application in similar
environments. Combining the above results with the correlations results from section 2.2.4
shows the high potential of the test rig to become a valuable tool for vibro-acoustic charac-
terisation of lightweight panels under structural/acoustic loading and to determine standard
TL values by means of non-standard measurements in a non-standard environment.

2.3 Conclusions

A new experimental setup to study the vibro-acoustic behavior of lightweight structures has
been presented and discussed. Structural-acoustic coupled characteristic, coincidence fre-
quency and acoustic IL can be measured in a fast and easy manner. The testing apparatus
is designed to be small, movable, and consequently also able to provide repeatable mea-
sures and a desired and predictable low frequency acoustic field. The capability to have
predictable acoustic characteristics of the presented facility, also in the fully modally domi-
nated frequency region, become appealing for investigating noise and vibration properties of
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lightweight components in a broadband frequency range. The aim is to extract useful para-
meters from the measured data, coming from a non-standard tool, in order to get a reliable
prediction of the standard noise and vibration properties of lightweight panels themselves.
Furthermore, the simplicity of the geometry does not require very sophisticated numerical
models to provide satisfactory predictions of the measured behaviour in a very wide fre-
quency domain. A wave based model can be easily prepared to this end to overcome the
limitations of standard numerical techniques (FEM/BEM) at higher frequencies. This setup
has been used to test a lightweight component, such as a honeycomb sandwich plate, in order
to investigate its noise and vibration characteristics.

3 AN INVERSE APPRACH FOR THE ACOUSTIC MOBILITY CHARACTERIZA-
TION OF A LIGHTWEIGHT PANEL TESTED IN A SMALL REVERBERANT
CHAMBER

In the pervious chapter it has been analyzed the capability of having a prediction of the Inser-
tion and Transmission Loss charactheristic of small sized lightweight components by mean
of a small reverberant chamber designed at KU Leuven (PMA Soundbox, left figure). To
retrieve this acoustic property, the acoustic field inside the test rig has to be diffuse. For the
PMA Soundbox, this condition is satisfied above 1600 Hz. As expected, it is possible to
achieve a good prediction of the noise reduction properties above 1600Hz, while a discrep-
ancy is evident in the low frequency range, where the field is not diffuse (Fig. 1.9. Here the
modal vibro-acoustic coupling between the test rig and the tested panel affects too much the
measurements .

Diffusivity problems are common for small reverberant chambers. in order to investigate
this issue, analytical and numerical models have been employed to show the influence of
different parameters in the sound reduction index at low frequencies [10, 11]. Teresa Bravo
and Stephen J. Elliot [12] try to address the problem from an experimental point of view by
proposing the use of an array of loudspeaker, driven by partially uncorrelated signal in the
near field of the partition, in order to reproduce a diffuse sound pressure field impining on the
tested surface. Although there exist a lot of experimental and theoretical work on the vari-
ability of measurements at low frequencies, no effective solution has been found to address
this problem. It still represents a big issue about obtaining a complete characterization of
the noise reduction properties of lightweight structures and generating trustworthy numerical
models to predict their behavior in practical applications.

Here a fast and new indirect procedure to retrieve the mobility matrix of structural com-
ponents in the fully vibro-acustic coupled frequency region is introduced, independently from
the environment in which it is tested. The methodology allow for the determination of the
panel’s mobility by using the PTF (Patch Transfer Function approach) and involving (i)direct
measurements of the Sound Pressure Level on the inner surface of a sample tested in a small
cabin, (ii)good knowledge of the acoustic characteristics of the test rig. The aim is to develop
a hybrid numerical-experimental procedure in order to get, from a not standard test rig such as
a small reverberant cabin, a reliable prediction of the standard noise and vibration properties
of lightweight panels.

This chapter is structured as follow: an overview of the PTF method and its applications is
given in the first section, then the proposed methodology is explained in detail and validated
with a numerical reference case. In the last section, conclusions and an overview on possible
future works are listed.
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3.1 The patch transfer function (PTF) approach

The PTF method has been initially developed with the goal to be a useful alternative tool to
reduce the computational cost when solving coupled multi-system problems, while keeping a
good accuracy in the results. Introduced by Ouisse et al. [13], it has been applied for acoustic
coupling problems by Pavic [14], for a plate-cavity system by Aucejo et al. [15] and for
transmission loss calculation of a multi-layer system by Chazot and Guyader [16]. A hybrid
prediction scheme has been proposed and validate by Jan Rejlek et al. [17] to extend the PTF
approach to vibro-acoustic systems containing numerically characterized fluid domains and
experimentally characterized structural parts. Recently Veronesi et al. [18] implemented it to
develop a novel experimental method for the characterization of poro-elastic materials.

3.2 The bases of the indiect approach

The PTF approach is modular, allowing for different procedures (numerical, experimental,
analytical solution) to be used in order to assess impedance relation of each sub-system.
The presented methodology takes advantage of this feature in order to develop an indirect
procedure to characterize the mobility of a panel coupled to a small cabin excited by a set of
acoustic sources. The first step is to divide the entire system in two subsystems coupled on an
coupling surface, and then apply the the theorem formulated by Bobrovnitskii [19]. If one of
the sub-systems hosts sound sources while the other is passive, the global sound field can be
represented by the superposition of two simpler field components: the field produced by the
running sources with the coupling surface fully blocked (blocked pressure field), and the one
due to the velocity, at the coupling surface of the coupled system, when the internal sources
are switched off. Applying this principle at the panel inner surface, i.e. the coupling surface,
it is possible to retrieve its mobility. What is required is the knowledge of the following three
quantities: the global pressure field , the blocked pressure field and the surface impedance of
the fully blocked coupling surface.

3.2.1 Governing equations

Let us consider a simple fully coupled vibro-acoustic system (Figure 1.10.a)consisting in a
thin flat plate and a small cavity excited by a monopole source. For practical reasons the
coupling surface is considered to match the interface of the two sub-system, i.e. the panel’s
inner surface.

(a) (b)

Figure 1.10: Vibro-acoustic system: cavity, vibrating surface and acoustic monopole (a) -
Division of the vibrating surface in N patches (b). [2]

The PTF aproach consists in subdividing the coupling surface S in N elementary surfaces
∆Si(Figure 1.10.b), also referred to as patches. On each patch the dynamic quantities are
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averaged and considered to assume a constant value. For the i-th patch, the averaged pressure
and velocity are given by:

P i =
1

∆Si

ˆ
∆Si

Pi(x , y)dS (1.3)

V i =
1

∆Si

ˆ
∆Si

Vi(x , y)dS (1.4)

For the subsystem cavity, the transfer functions between the j-th excited patch and the i-th
receiving one can be written in terms of blocked impedance as follow:

Zij =
P i

V j

|V k 6=j =0 (1.5)

For the subsystem plate the transfer functions between the j-th excited patch and the i-th
receiving one can be written in terms of mobility as follow:

Yij =
V i

P j

|Pk 6=j =0 (1.6)

Zij represents the averaged pressure P j of the i-th patch when a unit velocity is imposed
on the j-th patch while keeping all the others patches blocked, i.e. V k = 0 for k = 1, .., N
and k 6= j.

Yij represents the averaged velocity V i of the i-th patch when a unit pressure is imposed
on the j-th patch while keeping all the others patches free, i.e. P k = 0 for k = 1, ..., N and
k 6= j.

Applying Eqs. 1.5 and 1.6 to all the patches, the impedance and mobility matrix Z and
Y can be built. They are symmetric square matrix with dimensions N*N .

Considering the acoustic sub-domain (indicated by the superscript 1), the total pressure
on the i-th patch of the coupling surface, can be expressed as:

P i
1 = P i

b + Z ij
blockedV j (1.7)

P ib is the averaged blocked pressure on the i-th patch due to the running source and keep-
ing the coupling surface fully blocked.

Vj is the velocity, at the coupling surface of the coupled system, when the internal sources
are switched off.

Writing Eq. 1.3 for each patch, the vectors P̄1 and V̄1 can be built. They are vectors
of dimensions N*1 containing respectively the averaged pressures and velocities on every
single patch. Eq. 1.3 can be than rewritten as follow:

P̄1 = P̄b + Z̄blockedV̄1 (1.8)

Because of the continuity conditions between the two sub-systems, the pressures and
velocities acting on the coupling surface have to be the same:

P̄1 = P̄2 = P̄interface (1.9)

V̄1 = V̄2 = V̄interface (1.10)
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Considering that P̄2 and V̄2 are related by mean of the panel’s mobility as follow:

V̄2 = Y panelP̄2 (1.11)

Eq. 1.11 can be used together with the coupling conditions 1.9 and 1.10 in Eq. 1.8, and
changing the sign of V̄2 when moving from sub-system 2 to subsystem 1, we obtain:

P̄S = P̄b − ZblockedY panelP̄S (1.12)

With some algebra Eq. 1.12 can be written as:

(I + ZblockedY panel)P̄S = P̄b (1.13)

The aim is to indirectly retrieve the mobility matrix Y panel by using Eq. 1.13. For this
purpose a matrix equation needs to be built. This goal can be reached by using a set of at
least N acoustic loads. For the i-th acoustic excitation a vector equation like Eq. 1.13 can be
written:

(I + ZblockedY panel)P̄
i
S = P̄ ib (1.14)

Writing Eq. 1.14 for each acoustic load, and considering that the matrices Zblocked and
Y surface are constant, being characteristics of the system and independent from the acoustic
load, a set of N equations can be built and grouped in a matrix form as follow:

(I + ZblockedY panel)PS = P b (1.15)

where PS =
[
P̄ 1
S .. P̄ iS .. P̄NS

]
and P b =

[
P̄ 1
b .. P̄ ib .. P̄Nb

]
.

Eq. 1.15 can be solved for Y panel, obtaining:

Y panel = Z−1
blocked(P bP

−1
S − I) (1.16)

Care has to be taken in the choice of the acoustic loads set. As shown in Eq. 1.16 the
matrix PS has to be inverted, so the N acoustic excitations have to be such that a set of N
independent pressure fields will be generated on the coupling surface.

The quantities Zcavity and P b are only related to the testing room and the complete
knowledge of its properties (like for an in situ designed small reverberant chamber or for
simple regular geometries) allows for calculating them via FEM/BEM or analytically. PS
takes in account the global coupled response of the vibro-acoustic system and it can be ex-
perimentally achieved by mean of a set of microphones placed close by the inner surface of
the tested panel.

3.3 A Numerical application of the methodology

The proposed approach is presented here by means of a numerical example and the acquired
mobility matrix compared with a reference one. As a vibro-acoustic system, a small rectan-
gular cavity coupled to an homogeneous aluminum plate is considered (Figure 1.10). The
plate is 5 mm thick and its dimensions on the xy plane are 1.5 m and 0.3 m along x and y
directions respectively. The panel surface is also considered as coupling surface, it covers
entirely one wall of the cavity, which dimensions are then 1.5 m, 0.3 m and 0.4 m along x,
y and z. Simply supported boundary conditions are imposed on each edge of the plate. The
frequency range investigated goes from 0 Hz to 250 Hz.
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Figure 1.11. Rectangular cavity and Aluminum plate’s size [2].

The material properties of the two subsystems are shown in Table 1.4.

Material Density (Kg/m3) Phase speed (m/s) Young’s modulus (N/m)

Air 1,21 340 —

Aluminum 2770 — 72 ∗ 109

Material Poisson’s ratio (ν) Damping ratio(ξ) Absorption coefficient (α)

Air — — 0,005

Aluminum 0,33 0,001 —

Table 1.4: Material properties used for modeling the fluid inside the acoustic sub-domain and
the Aluminum plate [2].

In order to choose an optimal configuration for the number of patches to be used and
for the typology of the subdivision in patches for the structural sub-system, a modal analysis
has been performed in advance. Table 1.5 shows acoustical and structural eigenfrequencies
together with the associated number of half-wave along x and y , for the plate, and x , y and
z for the cavity.

Subsystem Order Eigenfrequency [Hz] Type

1 0 (0,0,0)

Cavity 2 113 (1,0,0)

3 227 (2,0,0)

Panel

1 141 (1,1)

2 157 (2,1)

3 184 (3,1)

4 222 (4,1)

Table 1.5: The natural frequencies and semi-wave number of the related eigenmodes of each
uncoupled system [2].

In the frequency range of interest the panel has only mode shapes having one semi-wave
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along y , while the maximum number of semi-wave along x is four. The panel has been then
divided in one row of 8 patches along x in order to have at least two patches for semi-waves in
the whole frequency range analyzed. Is it important to underline that only one row of patches
along y has been used because of the pressure will change predominantly along x resulting,
in the analyzed frequency region, quite constant along y instead . Having another row of
patches would translate in adding more load cases and creating bigger matrices, increasing
the computational cost and decreasing the quality of the mobility matrix prediction. Indeed,
at a fixed coordinate x, the pressure on the two patches along y would be almost the same,
generating in the matrix PS linearly dependent rows which will give singularity problems.

3.3.1 The reference Mobility

The reference mobility matrix of the Aluminum plate has been calculated by mean of FEM
analysis. A finite element model of the in vacuum plate with simply supported boundary
conditions has been generated and 8 analysis have been performed. The i-th run consists in
a frequency response analysis of the plate under a uniform unit pressure load acting on the
i-th patch. At the i-th unit pressure load, the averaged velocity of the j-th patch corresponds
to the component Y ijreference of the reference mobility matrix, so, for each run, the structural
frequency response has been averaged on each patch in terms of structural velocities allowing
for the determination of the 8x8 Y referencepanel matrix.

3.3.2 Blocked Impedance

The rectangular shape of the acoustic sub-system allows for the use of an analytical model,
based on modal superposition, in order to determine the blocked impedance matrix Zblocked
on the coupling surface. In the acoustic sub-domain, the steady-state acoustic pressure per-
turbation field p(r) is governed by the Helmholtz equation [20]:

∇2p(r) + k2p(r) = 0 ∀rεΩa (1.17)

where k the acoustic wave number and c the speed of sound.
For a rectangular rigid cavity of dimensions Lx , Ly and Lz , the eigenmodes of the

Helmholtz equation can be written as follow:

φi(r) = ζicos

(
mx(i)πx

Lx

)
cos

(
my(i)πy

Ly

)
cos

(
mz(i)πz

Lz

)
(1.18)

ζi =
√

2s, s = sign(mx(i)) + sign(my(i)) + sign(mz(i)) (1.19)

The Eigenfrequencies are:

ωi = πc

√(
mx(i)

Lx

)2

+

(
my(i)

Ly

)2

+

(
mz(i)

Lz

)2

mx,my,mz = 0, 1, 2... (1.20)

with the integers m(i) chosen to give a monotonous increase of ωi with i increasing, i =
1, 2... The patch-to-patch impedance between two patches of size 4x , 4y and 4x′ , 4y′
centered at r and r′ , respectively, is given by Pavic [14] as:
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Zblocked(r, r
′) = iωρc24x4y

∑
i

φi(r)φi(r
′)

ω2
i − ω2 + 2iεω

sinc

(
mx,i4x

2Lx

)
sinc

(
my,i4y

2Ly

)
sinc

(
mx,i4x′

2Lx

)
sinc

(
my,i4y′

2Ly

)
(1.21)

where ε represents the equivalent damping due to a small wall absorption coefficient
α� 1, and it can be expressed as:

ε = αc
1

Lx
+

1

Ly
+

1

2Lz
(1.22)

The amplitude of a wave propagating with a speed c of is assumed to be reduced by α
when traveling across the cavity length. Eq. 1.22 is based on the simplification that in the z
direction the damping is only half of the values in the other directions. That is because along
z one surface is used for the coupling, this surface is then blocked per definition and therefore
rigid without any damping.

3.3.3 Results

In the last step, a set ofM > N different acoustic loads has been chosen and applied to (i)the
FE model of the coupled vibro-acoustic system in order to retrieve PS , (ii)the FE model of
the sole acoustic sub-system having the coupling surface blocked in order to retrieve P b.

The reason why the number of acoustic loads is bigger than the number of patches, i.e.
the minimum number of loads to solve the set of equations, is related to the necessity to
get N independent pressures vectors P̄ iS . How to obtain this goal is not known a priori, so
M > N load cases have been used with a random choice of the monopoles’ positions and a
pseudo-inverse matrix P−1

S has been calculated. A methodology to understand a priori how
would be a set of exactly N load cases able to generate N independent pressure field P̄ iS is
under investigation.

Using Eq. 1.16 the mobility matrix Y panel has been calculated and compared with the
reference one Y referencepanel .

Is it possible to notice how the two curves matches really well in the frequency range
of interest. A small shifting of the anti-resonant peaks can be observed; it is related to the
averaging process of the velocity over the patches.

Figure 1.12 shows a comparison between the components (4,4) of the above mentioned
matrices.
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Figure 1.12: Comparison between the component (4,4) of the reference Mobility matrix (blue
curve) and the achieved one by mean of an indirect approach (dashed magenta curve) [2].

3.4 Conclusions

The proposed procedure is an indirect approach that has shown the capability to accurately
estimate the mobility matrix of a homogeneous Aluminum plate decoupled from the acoustic
environment in which it is tested. The procedure has only been validated numerically, but
the possibility to experimentally apply this method to a small reverberant chamber is quite
appealing since (i)a coupled Sound Pressure Field can be achieved by acoustic measure-
ments with a set of microphones placed inside the cavity, (ii)thanks to the deep knowledge
about shape and acoustic properties of the test rig, it is possible to estimate the blocked
impedance and blocked pressure matrices by means of numerical simulations involving FE
method. Once the mobilty matrix of the uncoupled panel is obtained, the transmitted sound
under different standard sound pressure fields can be numerically evaluated. This will then
allow for a standard-like noise reduction properties prediction.

The next step will be to develop an experimental procedure to completely validate the
proposed approach on a real application case.

Moreover, other three possible scenarios about future research works are now possible:

• To investigate the capability of scaling the acquired Mobility and predict the noise
reduction properties of a standard sample in a standard facility.

• To investigate the feasibility of performing sensitivity studies in order to: (i)understand
the influence of the test rig to the acoustic properties of the tested sample, (ii)correct the
measurements to achieve a trustworthy experimental prediction of the noise reduction
properties, i.e. to achieve standard like results unaffected by the test environment.

• To extend the presented method to the study of noise reduction properties of multilayer
systems.

About the last point listed above, it is worth to mention that, for studying noise reduction
properties of multilayer structures, methodologies based on sub-structuring the global sys-
tem are quite often used [16, 21, 22, 23]. Given a certain incident sound pressure field, the
transmitted one is achieved going step by step through every single layer; so the knowledge
of their characteristic impedance and/or mobility properties is crucial and not easy to get by
a direct experimental procedure. A numerical approach is often used, so the possibility to
experimentally apply the here introduced procedure is of great interest in order to tackle this
issue in a faster, and easier to realize, way.
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1 EXECUTIVE SUMMARY

Automotive industry is asking for new methodologies to characterise the acoustic emissions
of electric motors, since their integration in electric vehicles and plug-in-hybrid vehicles is
growing.

This chapter presents some research developments of Nearfield Acoustical Holography
(NAH) in cylindrical coordinates. In fact, this experimental technique is well suited for the
characterisation of acoustic sources such as electric motors.

The theory behind cylindrical NAH is briefly outlined here. A possible limitation of NAH
is the need of an overwhelming amount of microphones in the high frequency range, governed
by the Nyquist-Shannon sampling theorem. A possible approach to reduce the number of
sensors is the so-called compressive sensing. Its formulation, theoretical background and
applicability are discussed.

Two numerical test cases are developed to support the theory. First, practical aspects
of the classical NAH such as microphone positioning error, measurement noise, hologram
distance and measurement aperture are investigated and discussed. Moreover, a second test
case helps to understand the applicability of compressive sensing to NAH.

2 INTRODUCTION AND GENERAL FRAMEWORK

Automotive industry is increasingly driven by the need to offer fuel efficient and eco-friendly
mobility. In fact, legislators are reducing carbon dioxide limits in order to reach the targets
set by international agreements. At the same time, customers are asking for comfortable and
innovative vehicles.

The reduction of fuel consumption and pollution is mainly achievable by lightweight
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design, downsizing internal combustion engines (ICEs), and through electrification and hy-
bridisation of the vehicle’s powertrain.

Unfortunately, these new measures motived by the pressure to lower both the exhaust
emission levels and the fuel consumption present new design challenges in the vehicle design
process. For example, downsizing conventional ICEs leading to higher vibration levels due
to the reduced number of cylinders.

Moreover, under some powering strategies (such as parallel hybrid) multiple propulsion
systems are asked to operate automatically according to the driving conditions, with impor-
tant NVH issues linked to the switch from one configuration to another. For other typologies,
an ICE works as range extender, generating a constant noise and vibration level that does
not depend on the driving speed, which may be annoying for the driver and the other vehicle
occupants.

Pure electric driving is known to produce a low overall noise level, but a tonal compo-
nent generated by the electric motor(s) may dominate the sound emission and be annoying.
Furthermore, secondary noise components such as wind, tire-road friction and powertrain
become audible.

Finally, the global noise reduction raises the well-known security issues regarding low-
speed traffic such as pedestrians and cyclists.

In this framework, it is clear that automotive industry is asking for new methodologies
to characterise the acoustic emissions of electric components. This chapter focuses on an
experimental methodology to characterise the noise emissions of an electric motor, based on
Nearfield Acoustical Holography (NAH) in cylindrical coordinates. This technique allows
the evaluation of sound intensity, as well as pressure level and particle velocity. It is suitable
for any type of electric motor without knowing either the internal geometry or the material
properties.

This chapter is divided in two parts. The first part (sections 3–4) is theoretical, with
section 3 discussing the classical NAH approach in cylindrical coordinates, together with a
regularisation procedure to limit the influence of noise. Next, section 4 introduces compres-
sive sensing as a possible way to limit the number of measurements which are required by
the classical NAH in the high frequency range. The feasibility of this approach is also taken
under consideration.

The second part of this chapter (sections 5–6) presents a few numerical experiments.
Section 5 focuses on simulations to understand some practical aspects to be taken into account
while performing NAH in cylindrical coordinates. Section 6 shows and discusses a simple
test case in which compressive sensing is applied to NAH. Finally, section 7 summarizes the
conclusions.

3 CYLINDRICAL NAH

Nearfield Acoustical Holography (NAH) is an experimental technique that allows an accurate
characterisation of a source through the inverse propagation of a hologram. NAH is described
exhaustively in a book by Earl G. Williams [1], were formulas are given for planar, cylindrical
and spherical geometries.

NAH in cylindrical coordinates is extremely well suited for cylindrical sources like elec-
tric motors. This section follows the research stream first proposed in [2] and subsequently
documented in [3]. First, subsection 3.1 outlines the classical cylindrical NAH, while section
5 will show a numerical test case, which presents a different geometry as well as different
parameters if compared to references [2, 3].



Cylindrical Nearfield Acoustical Holography 25

3.1 Problem formulation and solution regularisation

Cylindrical Nearfield Acoustical Holography consists in four steps. First, pressure measure-
ments (or alternatively particle velocity measurements [4, 5]) are acquired on a grid of points
on a cylindrical surface (the hologram lattice). The second step involves the computation of
the angular spectrum through a spatial transform, which gives a wavenumber space (k-space)
description of the original distribution. Furthermore, this angular spectrum is multiplied by
an inverse propagator for the reconstruction of the pressure or velocity distribution on the
target surface. If the target surface corresponds to the source surface, the source velocity
distribution may be obtained. Finally, the results are transformed back to the real space.

The NAH procedure may be rewritten as an inverse problem, which is likely to be mathe-
matical ill-posed. The reason why NAH is prone to instability can be found in the distinction
between evanescent and non-evanescent waves, and their way of propagating in a medium.
Evanescent waves decay exponentially or follow power law decay, depending on the geom-
etry (planar, cylindrical, spherical). Those behaviours lead to an ill-posed inverse problem,
where they turn into exponential-like amplifications causing the blowing up of the measure-
ment noise. Several regularisation methods are available to deal with such problem [6, 7, 8, 9],
and Tikhonov regularisation has been chosen here.

NAH can be formulated as a single matrix expression. First, let us consider the forward
problem shown in eqs. (2.1–2.2) [9], where p is the spatial pressure distribution at a given
frequency and w is the velocity distribution on the source. Matrix H is built from a diagonal
matrix G containing the direct propagators of each k-space component, pre-multiplied by an
inverse DFT matrix F−1, and post-multiplied by F .

p = Hw (2.1)

H = F−1GF (2.2)

The inverse problem is shown in eqs. (2.3–2.4), where Rβ is the Tikhonov regularised
inverse, which depends on the regularisation parameter β. Superscript H denotes the Her-
mitian matrix (i.e., the conjugate transpose). Note that if β = 0 (no regularisation), Rβ is
simply the pseudo-inverse of H .

w = Rβp (2.3)

Rα = (HHH + βI)−1HH (2.4)

For increasing β, Tikhonov regularisation progressively reduces the impact of the singular
values, starting from the smallest ones. For this reason, it behaves as a low-pass filtering in
k-space.

Among the several methods to seek the value of β that best regularises Rβ [6, 9], the
generalized cross validation (GCV) offers a way to get to a very accurate solution without the
need to know the variance of the noise of the system [9].

The GCV imposes to minimize a functional [8], and it is referred to as “the leaving-one-
out method”, i.e., one measurement point at a time is omitted from the NAH procedure and
used as a reference. The optimal β yields the best reconstruction in the omitted points in a
least mean square sense [8].

The straightforward implementation of the functional suggested in [8] leads to a very high
computational effort. A much more time-efficient algorithm is described in [9].
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It is important to emphasize that the GCV scheme is not able to stabilize the problem if
the noise components are highly correlated [6].

It is worth to notice that the k-space components are obtained by a two-dimensional
discrete Fourier transform (2D-DFT). The sensor spacing is thus governed by the Nyquist-
Shannon sampling theorem, leading to an overwhelming amount of transducers in the high
frequency range, limiting the practical application of NAH.

4 NAH WITH COMPRESSIVE SENSING

Promising results have been published with regard to compressive sensing (CS) applied to
NAH with the aim to reduce the number of microphones without affecting the quality of the
reconstruction [10]. Compressive sensing is a well known scheme in the field of audio and
image processing, and it allows to slim down data at the source. CS wants to directly acquire
the minimum amount of data which is needed to fully represent a signal. In some fields such
as digital photography a huge amoutn of data is acquired and immediately compressed in
order to fit in a storage drive.

Compressive sensing is based on a concept referred to as signal sparsity, i.e., a signal can
be represented (fully or in an approximate way) by just a few components belonging to a
certain transformed space. This space is referred to as dictionary, and its components are the
so-called basis functions.

Signals are compressible, i.e., they are well approximated by sparse representations, when
they have a sparse representation in some domain [11, 12, 13]. The problem is then to rep-
resent a signal in that specific domain and keep only the relevant non-zero elements (the
sparsest the solution, the better the compression). A simple overview on compressive sensing
can be found in [13].

Most of the material regarding the application of compressive sensing to NAH comes
from reference [14], and the reader can refer to it for further details. A brief overview can be
found also in [3], without any numerical example.

4.1 Problem formulation

According to the notation that has already been introduced while describing the classical
NAH procedure in section 3, this subsection deals with the formulation of holography with
compressive sensing, highlighting its structure and complexity in comparison to eq. (2.1).

Formally, the only difference is in the definition of the source velocity distribution w,
which is shown in eq. (2.5).

w = Dα (2.5)

Matrix D is a dictionary of basis functions and α is a complex column vector containing
the coefficients of those basis functions. Dictionaries may be overcomplete [15], meaning
that the signal description expressed by eq. (2.5) is not unique, i.e., one basis function can be
represented by other basis functions. Mathematically, this corresponds to a non-orthogonal
dictionary. Such characteristic can result from either the fact that a dictionary has been de-
signed that way, or because some orthogonal dictionaries (complete dictionaries) are merged
together [15].

There are many existing candidates for the composition of a dictionary for compressing
sensing, such as Fourier basis functions, wavelets, chirplets [10]. The crucial point is that the
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dictionary has to be able to sparsify the signal, i.e., only a few atoms should (fully or in an
approximate way) describe the signal.

A first step towards the formulation of NAH with compressive sensing can be obtained by
substituting eqs. (2.2) and (2.5) in (2.1), resulting in eq. (2.6). It will become clear later that
matrix F−1 cannot be obtained by matrix inversion. For this reason, eq. (2.6) is rewritten as
shown by eq. (2.7), which is discussed in the upcoming list.

p = F−1GFDα (2.6)

p = FinvGFDα (2.7)

• p ∈ Rm×1 contains the measurements, sampled in space. It consist of complex num-
bers, since each measurement point carries the frequency domain information at a fre-
quency step. The measurement points may or may not be regularly spaced. A randomly
spaced hologram helps to capture the high frequency information with fewer measure-
ments in comparison to the number imposed by the Nyquist-Shannon sampling theo-
rem [10].

• α ∈ Rn×1 carries the complex coefficients of the basis functions. It should be as sparse
as possible, in order to allow fewer measurement points in comparison with classical
holography [12, 11].

• D ∈ Rl×n is the dictionary. Its columns are the n basis functions (atoms). Each basis
function is evaluated on a set of l regularly spaced points. The choice of l determines
the number of spatial Fourier components that will be propagated through G. The finer
the sampling, the higher the number of (evanescent) components taken into account.

• F ∈ Rl×l is a square matrix that applies the two-dimensional discrete Fourier trans-
form (2D-DFT) to the basis functions.

• G ∈ Rl×l has the same size of F . It is a diagonal matrix containing the (complex)
propagators related to the corresponding Fourier components. The propagators are
defined here for the forward problem (exterior problem), i.e., the propagation goes
from the source to the (cylindrical) surface on which the hologram is located.

• Finv ∈ Rm×l can not be computed by inverting F , as it was in eqs. (2.2) and (2.6).
This is because it may not be square (typically, m < l). Moreover, it may be evaluated
on a set of randomly spaced points, accordingly to the m measurement positions.

Eq. (2.7) can be written in the compact version shown by eq. (2.8), where A is the so-
called global sensing matrix, defined in eq. (2.9). This formulation highlights the measure-
ments vector p, the (sparse) complex coefficients vector α, and matrix A between them.

p = Aα (2.8)

A = FinvGFD (2.9)

Since the general aim of compressive sensing is to reduce the number of measurement
points, there will always be more basis functions than measurement points, i.e., n > m.
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Consequently, the system described by eqs. (2.8–2.9) is underdetermined, i.e., there are there
are fewer equations (measurement points) than unknowns (basis functions).

In order to reconstruct the signal, eq. (2.8) has to be inverted and computed. The solution
has then to be insert into eq. (2.5) to obtain the velocity distribution.

Among the infinite number of solutions that an underdetermined system such as eq. (2.8)
has, the sparsest solution is the best candidate for the success of compressive sensing. The
common Moore-Penrose pseudo-inverse (which relies on a `2 norm optimisation, i.e., on the
least mean square error) does not address this specification [11].

Given an arbitrary underdetermined system such as eq. (2.8), the sparsest among all pos-
sible solutions is obtained by a minimization of the `0 norm of the vector α [16], as shown in
eq. (2.10).

min
α
||α ||`0 subject to Aα = p (2.10)

Unfortunately, there are no efficient algorithms to solve such problem, due to the non-
convexity of the `0 norm optimisation [17, 16]. Fortunately, those limitations can be over-
come by “relaxing” the `0 norm up to an `1 norm problem [18, 19], for the solution of which
some methods are available [15].

The so-called basis pursuit (BP) has recently been strongly developed. BP is capable to
find the sparsest solution within an overcomplete (non-orthogonal) dictionary [15, 20], while
other methods need the basis functions to be orthogonal. Moreover, BP is based on global
optimisation, offers better sparsity and stable superresolution, and can be used with noisy
data [15].

Under some conditions, which will be discussed in section 4.2, both the `0 and `1 prob-
lems are proven to give the same and unique result. The relaxation from `0 norm to `1 norm
of eq. (2.10) leads to the new problem described by eq. (2.11), the solution of which will be
sought through a basis pursuit algorithm [15].

min
α
||α ||`1 subject to Aα = p (2.11)

In case of solution approximation, regularisation and noise filtering, a slightly different
approach is known as basis pursuit denoising (BPDN) [15].

In the next section, the applicability of the methodology that has been presented up to
here will be discussed.

4.2 Feasibility

Since the publication of the first milestones regarding compressive sensing by Donoho [18]
and by Candès, Romberg and Tao [21, 17], a huge amount of literature can be found. Some
papers are written by the same authors and include a few extensions of the already mentioned
references (e.g., [12, 22]), while other researchers applied the theory to image compression,
which seems to be the most interested field of application.

In order to get the correct results of eq. (2.10) through the solution of eq. (2.11), having
few measurement points and few non-zero basis functions, the matrices of the undetermined
system have to satisfy a condition known as restricted isometry property (RIP) [16]. The
RIP characterises matrices which are nearly orthonormal, at least when operating on sparse
vectors.

After defining the RIP (subsection 4.2.1), it will be explained in subsection 4.2.2 that
unfortunately it cannot be satisfied when performing NAH.
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4.2.1 The restricted isometry property (RIP)

Let us consider the linear system described by eq. (2.8) and the `1 problem described by
eq. (2.11). The restricted isometry property is a matrix condition which is set by means of
some restricted isometry constants, defined as the smallest number δS such that eq.(2.12)
holds for all S-sparse vectors (S ≤ K, so that δS is defined for every S = 1, 2, . . . ,K) [22].
A vector is said to be S-sparse if it has at most S nonzero entries.

1− δS ≤
‖Aα‖2`2
‖α‖2`2

≤ 1 + δS (2.12)

Saying that a matrixA satisfies a certain RIP means that for any arbitrary vector α having
S ≤ K nonzero entries, the result of eq. (2.12) stays confined in a certain band. In other
words, there is a certain sparsity K below which the amplification introduced by the matrix
transformation remains bounded.

Starting from this definition of RIP, reference [22] states that:

• if δ2S < 1, the `0 problem of eq. (2.10) has a unique S-sparse solution, i.e., if one
can prove that for a certain level of sparsity S any vector α with sparsity up to 2S will
amplify the matrix [A] less than a factor of 1 (when normalized by ‖α‖2`2 ), there is a
unique solution with sparsity S.

• if δ2S <
√

2− 1, the solution to the `1 problem of eq. (2.11) is that of the `0 problem
of eq. (2.10), and the convex relaxation is exact, i.e., if one can prove that for a certain
sparsity S any vector α with sparsity up to 2S will amplify the matrix [A] less than
a factor of

√
2 − 1 (when normalized by ‖α‖2`2 ), then the solution of the `1 problem

corresponds to the sparsest solution that the `0 problem would give.

The condition δ2S <
√

2− 1 corresponds to having the RIP satisfied (i.e., the RIP condi-
tion holds) [12].

The definition of RIP paved the way to further studies about the required number of
measurements and possible way to enhance the RIP. Reference [12] proposes a formula for
the required number of measurements, depending on the sparsity level. If this formula is
satisfied and if the global sensing matrix A is a Gaussian random matrix, then it is highly
possible that the RIP is satisfied. This implies an a priori knowledge of the signal, which
may be problematic for the characterisation of an unknown source.

It is then extremely important to find a dictionary which sufficiently sparsifies the signal.
It must be underlined that this might not be trivial, especially for NAH applications, since the
velocity field may be unknown.

Some attempts to improve the RIP involve dictionary learning [23, 24, 25] and the so-
called measurement matrix (also referred to as sensing matrix) [11, 26]. In order to go beyond
the Nyquist-Shannon limit, measurement have to carry the high frequency information. This
can be achieved substituting the classical regular sampling with a random sampling (in space
for images, in time for time-signals) [10].

Please note that both a random measurement matrix and a low matrix coherence are not
sufficient conditions to have the RIP satisfied, i.e., they are just tools to enhance (but not
guarantee) the RIP.
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4.2.2 RIP with Holography

In this paragraph, it will be shown that for acoustical holography it is not possible to satisfy
the RIP. The main reason for this has to be found in the matrix G containing the propagators,
already introduced in eq. (2.2). Before dealing with this crucial issue, a simplified problem is
introduced.

Eq. (2.7) can be rewritten in a simplified version if D is a Fourier dictionary, such that
eq. (2.13) applies. Dimensions n and l are the same, i.e., the number of basis functions is
equal to the number of the Fourier components.

FD = I (2.13)

The original signal must contain only a few Fourier components, so that α can be sparse.
Accordingly, eqs. (2.7–2.9) become as shown in eqs. (2.14–2.16). Σ replaces then A for the
simplified situation set by eq. (2.13).

p = FinvGα (2.14)

p = Σα (2.15)

Σ = FinvG (2.16)

Let us first focus on G, which is a square diagonal matrix containing the velocity prop-
agators (gv) of each wavenumber component. Their formula is presented in eq. (2.17) for
a cylindrical geometry [1], where j is the complex variable, Z0 is the acoustic impedance
of the medium (e.g., air), k0 is the wavenumber of the medium at a given frequency, Hn is
the Hankel function of the nth circumferential order, HI

n is the first derivative of Hn, kr is
defined through k0 and the longitudinal wavenumber (kz) as follows: kr =

√
k2

0 − k2
z , rh is

the radius of the cylindrical measurement surface (hologram), and finally a is the radius of
the cylindrical source. The hologram distance is then d = rh − a.

gv =
jZ0k0Hn (krrh)

krHI
n (kra)

(2.17)

Fig. 2.1 shows the propagators as a function of the circumferential order, i.e., the cir-
cumferential wavenumber (kθ) multiplied by the source radius a. The propagators have been
evaluated for a simple one-dimensional case corresponding to an infinite cylinder (kz = 0
such that kr = k0), for hologram distances from d = 0 m to d = 0.2 m and step 0.05 m. The
graph refers to a source with radius a = 0.1 m radiating in air at a frequency f = 5000 Hz.

It can be seen that as d assumes higher values, a different amplification is given to propa-
gating and evanescent components (low and high circumferential orders, respectively).

Having clarified the structure of G, it should now be easy to understand that a good RIP
cannot be obtained, not even pre-multiplying it by a random matrix. The difference in the
amplification of the k-space components precludes the restricted isometry constants to stay
within the RIP limits (i.e., δ2S <

√
2− 1).

Let us now move on to Finv , which represents an inverse two-dimensional Fourier trans-
form evaluated at the measurement points. Its elements finv(k, n) assume the formula shown
in eq. (2.18), where k and n refer to the measurement position and the Fourier component,
respectively.
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Figure 2.1: |gv | in air for f = 5000 Hz and a = 0.1 m. The colour shade gets lighter while
d increases from 0 to 0.2 m, and step 0.05 m.

finv(k, n) = e+j2πkn (2.18)

The real and imaginary part of finv(k, n) oscillate according to k and n, but its absolute
value is constant for every combination (k, n). In such scenario, a random microphone po-
sitioning cannot create a Gaussian random matrix A (or Σ), which would most likely satisfy
the RIP.

Thus, for NAH applications it is not possible to increase the rate of success of the ba-
sis pursuit algorithm just by randomizing the microphone positions, because of the struc-
ture of the matrices. This randomization is only needed to include information about higher
frequency components, which cannot be captured by a regular lattice due to the Nyquist-
Shannon limit.

5 CYLINDRICAL NAH: NUMERICAL EXPERIMENTS

This section presents a set of numerical experiments to investigate practical aspects of cylin-
drical holography such as microphone positioning error, background noise and measurement
aperture. This section follows the procedure proposed in [2], adapting it for a different ge-
ometry as well as different settings.

5.1 Test case

The test case presented in this subsection involves a cylindrical source of length l = 0.24 m
and radius a = 0.1 m, being a representative size for automotive applications such as electric
traction motors for green mobility.

A set of acoustical monopoles which are positioned on a cylindrical grid inside a vir-
tual source surface (Fig. 2.2), consisting of a superellipsoid with smooth, almost cylindrical
shape. The volume velocity distribution of the monopoles was chosen in order to obtain the
frequency independent source surface velocity distribution presented in Fig. 2.3. In order to
do so the source simulation technique (SST) [27] was used. The sound pressure in any po-
sition of the radiated field can be obtained by straightforward superposition of the monopole
fields.

Fig. 2.4 shows the hologram lattice, on which the sound pressures are measured. Unless
otherwise stated, the length of the hologram is set to 1.5 times the length of the source, and the
distance from the hologram to the surface of the source is d = 0.04 m. Moreover, the spatial
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Figure 2.2: Source layout. Virtual source geometry (green surface) and acoustic monopoles
for the source simulation technique (black dots).
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Figure 2.3: Frequency independent target normal velocity level (VL) for the source simula-
tion technique (SST).

sampling is chosen in such a way that the unwrapped mesh presents a similar microphone
spacing in the two directions (longitudinal and circumferential sampling ∆ ≈ 0.05 m). Under
these spatial sampling conditions, the frequency limit set by the Shannon sampling theorem
is f = c0

2∆ ≈ 3430 Hz (in air, where the speed of sound is c0 ≈ 343m/s).

A finer lattice can be designed if higher frequencies have to be taken into account. How-
ever, increasing the amount of microphones may modify the sound field around the source
(because of the wave-microphone interaction). Moreover, the data acquisition system may
become much more expensive due to the higher number of channels required.
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Figure 2.4. Source geometry (green surface) and hologram (blue dots).

5.2 Effects of the regularisation

To show the effects of the regularisation, a small error of zero mean and standard deviation
σ = 0.25 dB was added to the simulations. Fig. 2.5 shows the effect of the regularisation
procedure on the surface velocity reconstruction along the z axis at θ = 0.35 rad and along the
circumference at z = 0 m. The graphs include the reference velocity distribution generated
by the acoustic monopoles (solid gray), and the NAH result with and without regularisation
(dashed green and dotted blue, respectively). The velocity level is expressed in dB as V L =

10·log10( v2

v2ref
), with vref = 5·10−8 m/s.

The results obtained without regularisation are far from being accurate, while the situa-
tion completely changes with the regularisation. In particular, a good reconstruction of the
velocity distribution is observed in the region of the source (between the vertical dotted black
lines in Fig. 2.5).

Fig. 2.6 shows the spatial averaged square error (ε) of the hologram portion corresponding
to the source, for a frequency range from 10 to 3410 Hz, and step 100 Hz. Variable ε is defined
in eq. (2.19), where v0 represents the actual source velocity. The bar indicates spatial average.

ε = 10·log10

(
v̄2

v̄2
0

)
(2.19)

At high frequencies the k-space components exceed the noise and regularisation is not
necessary, while at low frequencies the low-pass k-space filter introduced by the regularisa-
tion is absolutely necessary and gives excellent results.

5.3 Simulations

5.3.1 Hologram length

For cylindrical NAH, an ideal example that lacks any noise cannot be considered due to the
spectral leakage in the longitudinal direction, along which the system is not periodic.
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Figure 2.5: Effect of the regularisation procedure on the surface velocity reconstruction along
the z axis at θ = 0.35 rad (top) and along the circumference at z = 0 m (bottom). Legend:
real velocity distribution (solid gray), NAH not regularised (dotted blue), NAH regularised
with Tikhonov and GCV (thick dashed green). The graphs refer to f = 1200 Hz. The vertical
black lines in the top figure help to visualize the geometry: the dotted line represent the limit
of the source, while the solid lines are the longitudinal limits of the hologram.
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Figure 2.6: ε from 10 to 3410 Hz and step 100 Hz. d = 0.04 m and ∆ ≈ 0.05 m. NAH not
regularised (dashed green), and NAH regularised with Tikhonov and GCV (solid blue).

To limit the influence of this phenomenon, the hologram has to be sufficiently long and
sufficiently close to the surface of the source, to keep the replicated sources far from the real
source. It is consequently important that the microphones which are located nearby the two
ends of the hologram measure a much lower pressure than the ones in the central part. On
top of this, the hologram distance has to be set as small as possible also in order to detect the
exponential decaying evanescent waves. A distance of 0.04 m has been chosen here.

Fig. 2.7 shows the influence of the hologram length, for a fixed hologram distance and
spatial sampling. With the exception of the shortest length, all other curves oscillate within
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3 dB at low frequency, and become very small above 1500 Hz. Since the results with a
hologram of 1.5 times the length of the source are judged accurate enough, this length has
been chosen as reference for the simulations, limiting the number of microphones.
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Figure 2.7: ε for four different hologram lengths, from 10 to 3410 Hz and step 100 Hz.
d = 0.04 m and ∆ ≈ 0.05 m. lho and l are the lengths of the hologram and the source,
respectively.

5.3.2 Hologram positioning error

A certain level of accuracy characterises the position of the sensors. Stochastic and systematic
positioning errors are distinguished and discussed here.

Stochastic errors are due to the accuracy that can be achieved while aligning the acoustic
center of the pressure transducers with their theoretical positions on the holographic lattice.
This type of error can be effectively corrected by Tikhonov regularisation with GCV (see
subsection 3.1).

Furthermore, systematic errors add to the above-mentioned stochastic uncertainty, and
consist of centering and alignment errors of the global array as well as its deviation from the
circular cross section. Clearly, the regularisation algorithm is not able to filter this type of
error [6].

First, some simulations aim to show how much stochastic errors influence the reconstruc-
tion of an acoustic source. Fig. 2.8 shows the spatial averaged square error for a normal
positioning error with standard deviation σxyz = 3, 6, 9 mm on each Cartesian axis. The
error introduced by last two positioning inaccuracies (6 and 9 mm) starts deviating from the
first case at approximately 2000 Hz. This is justified by the fact that a given positioning er-
ror has a stronger influence on a shorter wavelength. Nevertheless, the Tikhonov regularised
holography gives acceptable results.

Further simulations have been carried out to investigate the effects of the three types of
systematic error, i.e., a global translation of the entire array of 5 mm in all the three Cartesian
axes (Fig. 2.9a), an angular misalignment of 0.01 rad of the longitudinal hologram axis (max
displacement of 5 mm, Fig. 2.9b), and a stretching of the circular cylinder section to an oval
section (max displacement of 5 mm, Fig. 2.9c). A further simulation has been carried out
for the sum of all those systematic errors. Fig. 2.10 shows the results. A part from a few
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Figure 2.8: Effect of stochastic microphone positioning error for Tikhonov regularised NAH.
Spatial averaged square error from 10 to 3410 Hz and step 100 Hz. The values in the legend
refer to σxyz .

outliers and the high frequency range, the errors introduced by this type of inaccuracies are
very small or can even be neglected.

a b c 

Figure 2.9: Systematic errors. Ideal holograms (dashed green) and geometric errors (solid
black).

5.3.3 Measurement noise

A certain amount of noise will always affect the measurements. Two types of noise are
discussed here.

The first aspect is environmental background noise. For example, an acoustic source lo-
cated outside the microphone antenna may introduce a spatially correlated error which cannot
be filtered by the regularisation. A typical situation is a wave reflection on a wall. Free-field
conditions are needed to avoid this disturbance, which can be achieved in an anechoic room.

A further type of noise is the stochastic electronic noise of the measurement chain.
Fig. 2.11 shows a set of simulations which has been performed to investigate this noise source.
A normally distributed error has been added to the microphones, with a standard deviation of
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Figure 2.10: NAH spatial averaged square error regularised with Tikhonov and GCV from
10 to 3410 Hz and step 100 Hz. Effects caused by systematic errors.

0.25, 0.5, 1 and 3 dB. The figure shows that the Tikhonov regularisation can effectively filter
this type of noise (it has a spatially uncorrelated shape with an extremely low magnitude).
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Figure 2.11: NAH spatial averaged square error regularised with Tikhonov and GCV from
10 to 3410 Hz and step 100 Hz. Effects caused by environmental noise.

6 NAH WITH COMPRESSIVE SENSING: NUMERICAL EXPERIMENTS

This section is based on reference [14], and it presents a set of numerical experiments with
the aim of investigating compressive sensing within a NAH scheme.
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6.1 Test case

A simplified numerical test case has been developed. The test case is one-dimensional, i.e.,
limited to a cross section of an infinite cylinder. This implies that kz = 0, which corresponds
to an infinite wavelength in the longitudinal direction. Moreover, there is no spectral leakage,
because the hologram consist of a circumference, along which the signal is periodic.

The dictionary is a complete (orthogonal) Fourier dictionary, built such that eq. (2.13)
is satisfied. Accordingly, the source velocity profile is built by 1 or 2 Fourier components,
corresponding to a sparsity of 2 and 4, respectively (each Fourier component has two complex
conjugate non-zero elements). Finally, no noise is being introduced in the system, and the
exact solution is sought.

The source radiates in air, and a single frequency (f = 5000 Hz) is considered. Two
Fourier components corresponding to a circumferential order of 8 and 18 are taken into ac-
count. They refer to a propagating wave and an evanescent wave, respectively. This can
be seen looking at the propagators in Fig. 2.1, which have been evaluated under the same
settings.

The number of measurement points is m = 14, always below Nyquist-Shannon limit (or-
der 8 would need at least 16 points). Moreover, three different sets of transducer positioning
are considered. One set consist of regularly spaced microphones, while the other two sets are
built from two different random distributions.

Like the example of the classical cylindrical NAH presented in section 5, the source radius
is a = 0.10 m. Two hologram distances d = 0.02 m and d = 0.04 m are tested.

Fig. 2.12 shows the source geometry and the velocity distribution. The source consist of
42 points, regularly spaced along a circumference. Such discretization allows to propagate
circumferential orders up to the 20th, as indicated by the DFT of the source velocity profile
(Fig. 2.12 bottom right).
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Figure 2.12: Source of the test case: geometry (left), velocity distribution (top right) and its
DFT (bottom right).

Fig. 2.13 shows the microphones, according to a regular positioning (circles) and to one
random scheme (diamonds), at a distance d = 0.02 m. A complex hologram is created
starting from the source velocity profile shown in Fig. 2.12. As expected, the evanescent
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order 18 is strongly attenuated.
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Figure 2.13: Hologram of the test case: microphone positions (left), complex hologram and
its DFT (right). Legend: ref is the reference hologram, i.e., the hologram evaluated at the
42 points that correspond to the source points, marked as src; holrdm and holreg are the
holograms with random and regular spacing, respectively.

6.2 Simulations

6.2.1 Reference scenario

Fig. 2.14 shows the NAH results for a first simulation, which will act as reference scenario
for the examples that will be described in the next subsection. Its settings are in line with
Fig. 2.12 and 2.13, with the only difference that the evanescent order is omitted. Conse-
quently, only the propagating order 8 is present (sparsity K = 2). It can be seen that the
reconstruction of the source velocity distribution (thick dashed green) is excellent for both
holograms (random and regular positioning are represented by diamonds and circles, respec-
tively). Moreover, in this particular case basis pursuit gives the correct result also for the
regularly spaced hologram with sub-Nyquist sampling.

The results have been obtained with a free MATLAB-compatible package called cvx [28],
which allows for a fully customizable definition of problem and constraints.

6.2.2 Further scenarios

Starting from the reference scenario, three further simulation cases will be presented here.

1. Same as the reference scenario (i.e., d = 0.02 m), but including the evanescent order
18 (such that now both orders 8 and 18 are present, with a sparsity K = 4). Fig. 2.15
shows again an excellent reconstruction of the velocity profile, but this time only with
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Figure 2.14: Reference scenario: reconstruction of the source velocity distribution (top) and
its basis functions (bottom). Legend: src is the source, BPrdm and BPreg are the basis
pursuit solutions with random and regular spacing, respectively; DFTsrc is the amplitude
of the source Fourier components, and α are the basis functions obtained through the basis
pursuit algorithm.

the randomly spaced hologram. The failure of the regularly spaced hologram is un-
derstandable, because the number of microphones is now much below the Nyquist-
Shannon limit.

2. Same as point 1 (i.e., d = 0.02 m, orders 8 and 18, sparsityK = 4), but with a different
random positioning. Fig. 2.16 shows that the new set does not allow for a correct source
characterisation. This means that point 1 was just a “lucky case” in which basis pursuit
gave the correct result.

3. Same as point 1 (i.e., “lucky” random positioning, orders 8 and 18, sparsity K = 4),
but with a higher distance d = 0.04 m. It is clear from Fig. 2.17 that NAH with basis
pursuit failed, even if the random set is the one that has previously given the correct
results. An increase in the hologram distance reduces the evanescent component sub-
stantially. At a certain point, the basis pursuit algorithm it is not able to recognize that
component, even if the only noise present is extremely small (the system is affected
only by numerical noise). In comparison to classical NAH, holography based on basis
pursuit is more sensitive to the problem related to noise and evanescent components.

Those scenarios have been presented in order to show that indeed compressive sensing
can give the correct results with less transducers, but at the same time it is extremely dan-
gerous to rely on the solution of NAH with compressive sensing without taking care of the
mathematical background, even if the sparsity of the system is very good.

7 CONCLUSIONS

The first part of this chapter gave an overview on Nearfield Acoustical Holography (NAH)
in cylindrical coordinates, together with the description of a regularisation scheme. Such
approach is well suited for the acoustic characterization of an electric traction motor for
green mobility. Moreover, compressive sensing (CS) has been discussed as a possible tool to
reduce the number of microphones required by classical NAH in the high frequency range.
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Figure 2.15: Scenario 1: reconstruction of the source velocity distribution (top) and its basis
functions (bottom).
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Figure 2.16: Scenario 2: reconstruction of the source velocity distribution (top) and its basis
functions (bottom).

A set of numerical simulations showed a few practical aspects of classical cylindrical
NAH, and confirmed the results obtained in a previous study [2, 3] for a different geometry.

The proposed antenna layout allows for microphone positioning errors up to 6 mm with-
out introducing substantial errors (ε ≤ 3 dB) provided the Tikhonov regularisation combined
with a Generalised Cross Validation parameter selection criterion is employed.

The hologram length shall exceed the source longitudinal dimension by a factor of at least
1.5. Specifically, a hologram suitable for studying the acoustic emissions of a cylindrical
source with a radius of 0.1 m and a length of 0.3 m up to a frequency of 3400 Hz is a
cylindrical structure of radius 0.17 m and length 0.45 m, containing 220 microphones.

A second set of numerical simulations involved a one-dimensional numerical test-case
that has been introduced in order to show the applicability of compressive sensing.

Compressive sensing relies on a matrix condition called restricted isometry property
(RIP) which, unfortunately, cannot be verified for arbitrary matrices. The RIP does not hold
for NAH applications, because of the structure of the matrices that build the system. In
particular, the propagators of the wavenumber spectrum (k-space) deteriorate the situation,
especially when the different amplification of propagating and evanescent waves becomes
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Figure 2.17: Scenario 3: reconstruction of the source velocity distribution (top) and its basis
functions (bottom).

substantial. For this reason, a randomisation of the measurement positions cannot lead to a
good RIP.

NAH with CS remains promising only if the sparsity of the acoustic field is sufficiently
known, and this can be very problematic. To apply compressive sensing within a NAH frame-
work, a good a priori knowledge of the source is needed, in order to evaluate the sparsity and
enhance it by choosing the most suited dictionary.
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1 EXECUTIVE SUMMARY

The latest advances in the field of design and optimization require new approaches to switch
from component level to system level simulations. Among these new approaches, parametric
Model Order Reduction (pMOR) is getting attention for its potential to solve multiphysics
problems accurately and without recurring to computationally expensive co-simulation tech-
niques.

In general, Model Order Reduction (MOR) techniques require two distinct phases; the
generation of the reduced order basis (ROB) and the simulation of the reduced order model
(ROM); this is a projection of the full order model (FOM) on the precomputed ROB. Paramet-
ric Model Order Reduction (pMOR) can be seen as an extension of these MOR techniques.
As the most compact ROB to describe the behavior of the system is typically parameter de-
pendent, the challenge lies in identifying a single small ROB which provides the required
accuracy over the relevant parameter range.

The research discussed in this chapeter investigates the possibility of applying pMOR to
structural finite-element models consisting of beam elements as FOM. It is shown that for
these models, the system matrices (mass and stiffness) can often be represented as an affine
function of a small set of scalar parameter functions. The constituent matrices of this affine
relation can be reduced offline, such that the online computational cost is independent of the
FOM size. The cross-sectional and material parameters for the beams are considered in this
work.



46 FP7 Marie Curie EID eLiQuiD (GA 316422)

It is shown how a very efficient reduction can be performed by using a constant projection
space when the manifold associated with the parameter space of interest has a small Kol-
mogorov n-width.

The work-flow to generate the parametric reduced order model (pROM) is as follow:
parameter sample generation of the full order models (FOM); selection of the appropriate
scalar parameter functions; use the FOMs to construct the local ROB (modal space) for a
single parameter; generate the global ROB through an ad-hoc developed greedy algorithm.
This procedure is validated numerically on a FE model of a gantry bridge. This example
demonstrates the speed-up for evaluating different parameter responses from the pROM in
comparison to the FOM while still maintaining the required accuracy.

2 INTRODUCTION

Integrated multi-domain design is becoming more and more relevant in industry with the in-
creasing need in mass reduction and machine performance improvements. Finite Element
method (FEM) and the other modelling techniques based on discretisation of governing (par-
tial) differential equations of these different interacting domains often require a large number
of degrees of freedom (DOF). This makes the simulations computationally expensive which
is undesirable in case of dynamic studies in a multi-query context like optimization. In this
regard, model order reduction (MOR) is very promising as it allows compression of the in-
formation obtained by large models without significant loss in accuracy.

MOR is often obtained via projection methods. These techniques apply to full order sys-
tems and generate the solution in 3 steps: Computation of the full order matrices, computation
of the reduced order basis (ROB), projection of the full order matrices on the ROB. The solu-
tion is then obtained solving the resulting reduced order model (ROM). The ROM obtained
with this procedure still depends on the size of the full order model (FOM). In fact, for differ-
ent parameter configurations, different full order matrices have to be computed. Moreover,
the optimal ROB (with minimum number of vectors) extracted for a specific parameter con-
figuration can only span the subspace containing the solution for that specific configuration.
All the subspaces of each parameter configuration have only one important thing in common:
they are all contained in the same manifold.

The challenge is generating a ROM independent from the original size of the FOM mean-
ing that for each parameter change, the ROM can be updated without computing the new full
order matrices or a new ROB. These techniques can be called parametric model order reduc-
tion (pMOR) techniques. The new framework, by which the simulations are done, consists of
two separated parts: an offline phase, where the parametric ROM is generated; online phase,
where the simulation takes place and it should provide the highest computational performance
possible. Performance and size of the ROM are dependent on the quality of the previously
mentioned manifold. An important property of the manifold is its Kolmogorov n-width. This
indicates how much the subspaces contained in the manifold vary from one to another in the
parameter range of interest. In particular, if the Kolmogorov n-width is small the subspaces
vary very little and they can all be spanned by the same global ROB. At local level (for the
specific parameter configuration), the global ROB does not necessarily offer the maximum
reduction but it provides the same required accuracy for all the parameter configurations of
interest.

When the Kolmogorov n-width is large, the number of vectors required in the global ROB
is large thus the resulting reduction will not be sufficient for the performance required and
typically other approaches have to be employed. Interpolation methods for manifold are an
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interesting field of research as there is an open challenge in trying to keep consistency of the
reduced coordinates from one ROB to another [1]. Recently [2], new pMOR techniques based
on partitioning of the parameter space have been developed showing interesting potential for
complex nonlinear problems. In these techniques, a good balance between the accuracy of the
local ROBs calculated offline and the speed of the ROB selection for the online simulation
is essential. The PEBL-ROM [2] generates a partitioning of the parameter space with a
bisection tree structure that gives performance advantages also in the online simulation.

The goal of this work is to develop a pMOR technique that minimizes the simulation
time for FE models of beam networks by bringing all the expensive computation offline. This
pMOR scheme is based on an affine representation made ad-hoc for models of beam networks
and a global projection space is used considering problems of small Kolmogorv n-width. The
two together allow to generate a ROM completely independent from the computational load
of the original FOM.

In literature, affine functions to describe the stiffness matrix variation of a plate with the
thickness are already used for pMOR. In [3], the authors use Taylor expansions to retrieve
affine functions to describe the stiffness matrix variations due to thickness changes of a panel.
Alternative to Taylor expansions, curve fitting with a low order polynomial can be used. In
either case, the method requires very little knowledge of the system making it easy to imple-
ment. The main drawback is that the number of affine functions needed grows exponentially
with the number of parameters of interest. The affine functions for describing stiffness vari-
ations are derived based on an analytical beam model. This approach decreases considerably
the amount of functions needed for an accurate description and permits an accurate analysis
of multi-parameter perturbations.

The chapter refers to the research presented in [4, 5] and is organized as follows. Section
3 is taken from [4] and contains a short and general overview on projection methods for MOR
is given. In section 4 (from [5]), the pMOR scheme is described. In section 5 (from [5]), the
affine functions of the parameters are derived based on physical considerations of the beam
and are used to describe the system matrices. The developed greedy algorithm to generate the
global projection space is presented in section 6 taken from [5]. In section 7, an application to
a gantry-bridge for laser cutting is presented. The bridge presents a network of simple beams
all characterized by a hollow rectangular cross-section. Comparisons with the results of the
FE model are shown.

3 PROJECTION METHODS FOR MODEL ORDER REDUCTION

Projection methods are a basic tool used to extract approximations to the solution of large
linear systems. In fact, large part of MOR techniques is projection-based [6]. This strategy
has proven to be very effective as it compresses the original models with minimal loss of
information.

In structural dynamics, components can be modelled as a n-DOF system through semi-
discretisation in the spatial domain by means of FEM and can then be represented as a set of
second order ordinary differential equations ODE:

Kx+ Cẋ+Mẍ = Bu (3.1)

In this equation K,C,M ∈ Rn×n are respectively the semi- discretised stiffness, damping
and mass matrices. x ∈ Rn is the vector of nodal displacements and B ∈ Rnm is the force
application matrix for the m input forces u. A projection techniques is meant to extract an
approximation of the solution to problem of equation (3.1) from a subspace ofRn. In general,
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projection technique needs two subspaces: the projection subspace (right subspace), used to
approximate the solution, and the subspace of constraints (left subspace). Thus, the vector
of motion x of equation 3.1 can be expressed as a linear combination of vectors of motion
(vectors used to span the projection subspace)

x̃ = Ψxr (3.2)

where Ψ ∈ Rn×q is a matrix whose columns are the vectors used for projection, vector
xr ∈ Rq×1 is the new state vector and its components are referred to as modal participation
factors when a modal reduction is applied.
Equation (3.2) introduces an approximation therefore, the use of x̃ into equation (3.1) brings
in a residual term r = Kx̃ + C ˙̃x + M ¨̃x − Bu. A subspace of constraints spanned by Φ is
then needed such that r ⊥ Φ. This two-sided approach is called Petrov-Galerkin projection
and is an oblique projection. When Φ = Ψ the Petrov-Galerkin condition is called Galerkin
condition and is said to be an orthogonal projection [6].

For the work presented in this chapter, Galerkin projection is implemented. Therefore in
this text, both projection basis and ROB refer to a set of vectors that span the subspace that
contain the approximation to the solution.
Projection bases can be retrieved in many ways both in the frequency and in the time do-
main [7, 8]. Frequency-domain techniques are well suitable for stationary problems where a
small selection of reduced order basis is suitable to describe the system in a certain frequency
band. For problems with strong transients, like shocks, or nonlinearities, time-domain simu-
lations are better suited. For more detailed information about available techniques for ROB
generation, the reader can see [7, 8].

4 THE REDUCTION SCHEME

Model order reduction procedures based on projection consist of distinct operations to be
executed:

(i) generation of a Full Order Model (FOM);

(ii) generation of the global ROB;

(iii) projection of the FOM on the subspace spanned by the ROB to generate a ROM;

(iv) simulation of the ROM.

These operations can be executed offline (executed only once in the preprocessing) or online
(executed at each calculation). The ideal configuration for optimal reduction is when opera-
tions (i-iii) are all made offline and only (iv), the simulation, is performed online. This can for
example be achieved by employing a reduced basis (RB) method [5]. These methods require
that the FOM can be expressed as an affine function of the parameters.

The affine representation of a general parametric matrix A ∈ Rn×n is expressed as

A(µ) =

q∑
i=1

Aifi(µ) (3.3)

where the Ai represent the matrices of coefficient that are constant and parameter indepen-
dent, and the corresponding fi are scalar basic functions of the parameters. Given a general
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parametric n degrees-of-freedom (DOF) system in matrix form without damping

p∑
n=0

K(µ)x+

p∑
n=0

M(µ)ẍ = Bu (3.4)

where K(µ),M(µ) ∈ Rn×n, are respectively the parametric stiffness and mass matrices,
x ∈ Rn is the vector of nodal displacements and B ∈ Rn×m is the force application matrix
for the m input forces u. Using the affine representation of equation (3.3), the system matrices
can then be represented as

p∑
n=0

Knf
K
n (µ)x+

p∑
n=0

Mnf
M
n (µ)ẍ = Bu. (3.5)

Equation 3.5, can be reduced through a Galerkin projection on the subspace spanned by the
ROB indicated as V ∈ Rn×q with q generalized coordinates.

V T
p∑

n=0

Knf
K
n (µ)V xr + V T

p∑
n=0

Mnf
M
n (µ)V ẍr = V TBu. (3.6)

Thanks to the affine representation, the projection of the constant matrices can be done offline
with enhancements of the computational performance. The resulting ROM is

p∑
n=0

Kn,rf
K
n (µ)xr +

p∑
n=0

Mn,rf
M
n (µ)ẍr = V TBu. (3.7)

Equation (3.6) represents already a ROM but this implies that the projection of the full system
matrices is performed in the online phase prior to simulation. With equation (3.7), the affine
representation of the system is exploited and the constant matrices Kn and Mn of equation
(3.6) can be reduced offline to generate the reduced constant matrices Kn,r and Mn,r.

The affine representation of equation (3.3) is derived in section 5 for a framework of beam
elements. The projection space V will be generated through a greedy algorithm developed
ad-hoc to work with eigenvectors as described in section 6.

5 AFFINE REPRESENTATION FOR BEAMS

Projection based MOR applies to a vast range of detailed numerical models. Structural FE
models will be used in this work to study the dynamics of a network of beams.
The starting hypothesis is the existence of a finite-dimensional set of functions of the para-
meters of interest that can describe the matrix variation. In Hong et al. [3], the variation
of the stiffness of a plate with respect to one geometrical parameter is described without the
need of interpolation using a Taylor polynomial. A general polynomial expansion of d vari-
ables of order η would lead to ηd monomials and in a multivariate problem, as the one herein
presented, this approach results unfeasible and a different approach has to be found.

The proposed approach is to look into the mechanism of deformation of the beam element
and to find the affine function of the parameters needed to describe the system matrices.
The 3D beam element refers to a straight bar with uniform cross-section that can undergo
axial, bending, and torsional deformation. The shape functions of a 3D beam element have
to describe a few different phenomena: longitudinal displacement, axial torque, transversal
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deflections and rotations. The beam element has two nodes located at its extremities, each
having six DOF. Herein, linear elastic behaviour of the material is considered.

Considering the reference frame to be the three principal axes, it is convenient finding
the stiffness quantities through force and moment equilibrium equations at the nodes. In fact,
using this shrewdness, the stiffness matrix of a single 3D beam element is strongly decoupled
and can be divided in sub-matrices [9]. The global stiffness matrix of the beam element
contains all the necessary information to generate the affine functions used in the presented
method.
Below, formulas describing load-displacement relations of the DOF in the 3D beam element
are discussed in order to find a minimal set of basic function that can describe the relation be-
tween the design parameters and the system matrices used to simulate the system behaviour.

5.1 Axial translation and rotation

The submatrix corresponding to axial load is a 2 by 2 matrix. The entries are all proportional
to

k1 = EA/L (3.8)

where, E is the young modulus, A is the cross section, L the length of the beam. The
submatrix relative to the axial torsional DOF is also a 2 by 2 with entries proportional to

k4 = T/γ =
GJ

L
(3.9)

In this equation J is a shape factor [10] that is introduced in place of the polar moment of
inertia to account of the warping of the surfaces during axial rotation of non-circular cross-
sections. The dimension of this factor is [m4]. This can be generally expressed as a function
of the geometrical parameters that define the cross section. In [11] the expressions of J are
listed for many different geometries.

5.2 Transverse deflection and rotation

The mechanism of deformation due to transverse load is a complex phenomenon that is gov-
erned by partial differential equations that not always have a known exact solution. How-
ever, in the hypothesis of small deformation, accepted approximations are available and used.
These are Euler-Bernoulli beam theory, Rayleigh beam theory and Timoshenko beam theory,
from least to most accurate. The first is only valid for slender beams as it does not include any
effect due to shear, and rotational inertia are neglected. Rayleigh theory includes rotational
inertia but this brings very little improvements as it still considers an undistorted cross-section
during bending. The deflection calculated according to Timoshenko beam theory includes the
effect of shear [12]. Effect of shear has to be taken into account for non-slender beams and
this is of crucial importance in a FE model where, if a dense mesh is used, the characteristic
length of the beam elements would result in short beams where the shear effect is dominant
and cannot be neglected.

The methodology herein presented uses Timoshenko beam theory. The two mechanisms
of deformation, bending and shear, can be thought to work in series. In fact, one of the
fundamental hypothesis to derive this theory is that the total deflection equals the sum of the
deflection due to bending and the deflection due to shear

d(x) = db(x) + ds(x) (3.10)
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web flange 

Figure 3.1: Cross-sectional surface partitioning [4]. The portions indicated as flange are those
where most bending energy is absorbed. The shear is dominant in the web. The notation
comes from the I-shape cross-section and it is used analogously for the hollowed rectangle
cross-section [13].

where, db and ds refer to bending and shear deformations respectively. To find the total de-
flection the two contributions are retrieved solving the following differential equations sepa-
rately.

∂2db
∂x2

=
Px

EI
(3.11)

Equation (3.11) relates the bending moment to the transverse displacement of the beam. Iy
is the moment of inertia about y-axis.

∂ds
∂x

= − P

kAG
(3.12)

Equation (3.12) describes the relations between the shear force and the transverse displace-
ment; k is the form factor for shear defined as

k =
A

I2
y

ˆ
A

Q2

b2
dA (3.13)

where Q is the first moment, b is the distance of the infinitesimal area dA from the neutral
plane for bending. Simplifications of equation (3.13) are available for most common cross-
sections. The application presented in section 7 uses hollow rectangular cross-section of
which in [13] is given an approximation for the form factor

k = A/Aweb (3.14)

with Aweb being the portion of surface as indicated in figure 3.1. Once the general solutions
of the differential equations (3.11) and (3.12) are calculated, boundary conditions typically
used in FE can be applied to generate the expressions of the stiffness. The sub-matrix for the
transverse deflection and rotation can be written as

kd =


R L/2 ·R −R −L/2 ·R

L/2 ·R L2/4 ·R+ EI/L L/2 ·R L2/4 ·R− EI/L
−R L/2 ·R R −L/2 ·R

−L/2 ·R L2/4 ·R− EI/L −L/2 ·R L2/4 ·R+ EI/L

 (3.15)

where

R =
12EI

L3
[1 + 12EI/(kAGL2)]−1. (3.16)
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5.3 The affine function

From equations (3.8 - 3.16), affine functions that can describe all the entries of the stiffness
matrix (approximately) can be generated. If the parameters of interest are those of the cross-
section it is possible to take all the independent expression that contain the parameters and an
affine representation of the stiffness matrix can be made:

K(µ) =

q∑
i=1

Aifi(µ) (3.17)

The Ai represent the matrices of coefficient of the corresponding basic function fi. The
parameters that can be taken into account are those that define the cross-section and the ma-
terial properties. In section 7 where an example is given, elements characterized by hollow
rectangular cross-sections are adopted and the parameters taken into account are h,w, t be-
ing height, width and wall thickness. Therefore, equations (3.8 - 3.16) are simplified and
rewritten to generate an independent set of base functions. The chosen basic functions are
summarized in table 5.3.

From affine function (3.8) and (3.8) of table 5.3, one can notice how the length of the
beam is not an invariant of the problem in this case: if the system contains 2 beams of same
cross-section but different length, equations (3.8) and (3.8) have to be evaluated for both
lengths. However, as most beam meshes show relatively high regularity, a sufficient number
of beams with the same parameters are typically present, such that a useful reduction can be
obtained.

As previously mentioned, the affine representation is obtained through a LS procedure.
The set of functions should be chosen numerically independent in order to limit the compu-
tational load. This can be double-checked by separating the expressions in basic monomials.
The LS problem to solve is used to find the coefficient matrices Ai of equation (3.17), for
each element of matrix K

min(||Kij(µ)− F (µ) ·Aij1:q||2) (3.18)

with µ a configuration of the parameters and F (µ) the matrix that contains the affine functions
evaluated for the configuration of the parameters. It follows that a number Q of stiffness
matrices coming from an FE software have to be generated. For the entry i-j the problem
reduces as

Aij = F (µ)† · bKij(µ)c (3.19)

where the symbol † refers to the pseudo inverse operation. A similar procedure can be used
to generate the parametric mass matrix. Suitable affine functions should be provided and the
LS method should be applied. For the element with hollowed cross-section of the example in
section 7 a lumped mass matrix is used therefore the resulting affine functions are

mx = my = mz = ρ
L

2
A (3.20)

where ρ is the volumetric density, mx,my and mz are the 3 linear mass components. And
for the rotational inertia

Jx =
L

2
J (3.21)
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where J is the polar moment of inertia. The mass matrix used in this work is a lumped mass
matrix and this justifies the selection of base functions (3.20-3.21). In fact, it is important
for accurate results that the fitting of the mass matrix is done with affine functions that are
consistent with those implemented in the FE model.

Cross-section Affine functions Description #

A = 2(h+ w)t− 4t2 From eq. (3.8) 1

ℎ 

𝑡 

𝑤 

J = 2t2(h−t)2(w−t)
(h+w)t−2t2 From eq. (3.9) 2

Iy = h3w
12 −

(h−t)3(w−t)
12 From eq. (3.15) 3

Iz = hw3

12 −
(h−t)(w−t)3

12 From eq. (3.15) 4

Iy

[
1 +

12EIy
‖1AGL2

]−1

From eq. (3.15) 5

Iz

[
1 + 12EIz

‖2AGL2

]−1

From eq. (3.15) 6

Table 3.1: Example of affine functions derived for a beam with hallow rectangular cross-
section [4].

The scheme of equation (3.17) adds an important constraint: the full order matrices used
to feed the LS method should be all of same dimensions. Therefore, parameter variations
should not affect the topology of the discretisation in this case. In the following section, the
parametric matrices are projected while maintaining the affine dependency.

6 THE GREEDY ALGORITHM

6.1 A general background

Greedy algorithms were introduced in the seventies as optimization techniques [14]. They
increased their popularity in many field because, despite the fact they do not necessarily find
a global optimal solution they succeed in finding local optima in a relatively short time [15].

In the field of MOR, greedy algorithms are used to construct subspaces adding iteratively
new vectors to the basis. The objective function is the accuracy of the solution coming from
the ROM therefore the method will seek where, in the parameter range of interest, the solution
at iteration q−1 is worst for the existent ROB Vq−1 and add new information using the FOM.
The general workflow of a greedy algorithm is the following:

(i) selection of the parameter domain and sampling;

(ii) initialization of the procedure with a nominal basis vector;
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(iii) employing an a posteriori error estimator to localize the combination that yields the
worst result

(iv) updating of the available set of basis vectors.

The method will iterate between (iii) and (iv) until the tolerance threshold set for the error
estimator is matched. The procedure has several crucial characteristics: if N is the number
of samples chosen for the ROB generation, the error estimator will be called N times per
iteration. Therefore, the error estimator has to be cheap to compute and not be dependent on
the complexity of the FOM.

An error estimator is an indicator of the error committed with the ROM with respect to the
FOM. Error estimators are used in many MOR schemes to generate adaptively the ROB. As
discussed above, the error estimator should be fast to compute as it is called many times in the
ROM creation algorithm and should be asymptotically correct with respect to the actual error
[15]. Given a continuous and coercive parametric variational problem, a relation between
error and residual can be obtained in matrix form as

r(v, µ) = Ae(v, µ) (3.22)

where A is the system matrix. If A is non − singular both sides can be pre-multiplied by
A−1. Calculating the norm on both sides and exploiting the triangle inequality

||e|| ≤ ||A−1|| · ||r||. (3.23)

This important result allows to solve the local minimization of the error using an error esti-
mator based on the residual.
In the next session a specific error estimator to be used in the construction of ROB is pre-
sented.

6.2 The proposed greedy algorithm for eigenvector basis

The concept behind the methodology presented here follows that of RB methods. However,
the error estimator has to take information from the residual of an eigenvalue problem. To
ensure the generality of the method some analytical considerations are made.

Given a parameter domain of interest that is limited as µlow ≤ µ ≤ µhigh , the procedure
starts choosing as initial ROB a truncated set of eigenvectors of a nominal configuration of
the parameters indicated as V0. At each iteration i, the system is updated by a set of new
vectors chosen according to the error estimator. The new ROB Vi is then obtained as the
combination of the old ROB Vi−1 and this new set of vectors.
The residual of an eigenvalue problem similarly to equation (3.22) can be expressed as

r = (Ki −Miλ̂ij)X̂ij (3.24)

where λ̂ij and X̂ij come from the ROM, while Ki and Mi are the FOM matrices. If λ̂ and
X̂ are an eigenvalue and corresponding eigenvector for the problem of equation (3.24), the
residual term will be zero. In the general case, λ̂ and X̂ are not expected to be a solution of
equation (3.24) therefore a residual r 6= 0 is obtained. From equation (3.24) it is not straight
forward to invert and obtain an error bound as it is in equation (3.23). In fact equation (3.24)
has two error source and requires finer considerations: for very accurate approximation of
the eigenvectors the residual may still be very high if the paired approximated eigenvalue
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is far from the actual eigenvalue. Vice versa, having a precise eigenvalue, therefore a small
residual, does not necessarily guarantee a good approximation for the eigenvector.

Proving that the residual of equation (3.24) can be used as error estimator for a greedy
algorithm is possible introducing the theory on matrix perturbations. Investigations on eigen-
value and eigenvector sensitivity due to matrix perturbation are particularly relevant for the
scope of this work [16].

The accuracy of the approximated eigenvalues depends on the conditioning of the di-
agonalisation matrix. If this results ill-conditioned, the residual norm will not represent a
thoroughly trustable error estimator. This is formalized in a theorem proved in [16] that is
here recalled.

Theorem 1. Given a semisimple matrix A ∈ Cn×n, suppose V −1AV = D, where D
is a diagonal matrix and V is non-singular. Given a perturbation of the matrix δA, λ̂ is an
eigenvalue of the matrix A+ δA. It follows that A has an eigenvalue λ such that

|λ̂− λ| ≤ cond(V )||δA||p (3.25)

where cond(V ) represents the condition number of the matrix V and || · ||P represents
the p-norm and p ≤ inf . This tells that, the approximation of the eigenvalues is good if the
condition number of the matrix of eigenvectors V is good and the perturbation of the system
A is small. The other requirement is on the eigenvectors whose sensitivity assessment results
to be more complex. A condition number for eigenvectors can be obtained using a Schur-like
decomposition of the system (see chapter 6 of [16]). A condition number estimator for the
eigenvectors is just given by the quantity ||A−1||.

Table 6.2 shows the greedy algorithm proposed. To favor readability the error estimation
is here based on only one eigenvalue pair but the essence of the algorithm does not change
if the estimate is done using more pairs. The matrices Ki and Mi may be large depending
on the complexity of the model. Therefore it is convenient precomputing them as this will
bring important improvements of computational costs also in the preprocessing time. Unlike
other greedy approaches present in literature where a single vector contribution per iteration
is usually added, this procedure requires to add a set of vectors at each iteration. This is
done to improve the convergence of the method. The added set corresponds to the parameter
configuration whose largest amount of information is missing. The drawback of adding a set
of vector is that some of the information spanned by the added vectors is probably already
available in the temporary global ROB and has to be filtered out. Therefore, the union opera-
tion of line 12 is done through SVD. The algorithm of table 1 is implemented and discussed
in the numerical example of section 7.

7 STUDY CASE

This section shows an application of the developed pMOR scheme to a gantry crane for laser
cutting. Gantry refers to a bridge-like structure that can be used for moving objects over an
area or for performing planar machining operation. Therefore, a gantry should be designed
according to the excitations, the velocity of operations and the weight to be carried during
the operations. The initial design of the gantry is shown in figure 3.2. A combination of
high-speed manoeuvrers and heavy loading may cause the entire structure to malfunction or
resonate.

The main components of this gantry are a bridge, two motors, and a laser head (figure
(3.2)). The bridge is attached to a railway and is modelled as a truss; it is expected to be the
most sensitive to the large accelerations of the manufacturing process. Therefore, the system
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1: FunctionVg = GreedyAlgorithm(µ,Vµ0 , toll)
2: Vg = Vµ0

3: whileMaxR > toll
4: for i = 1 : N
5: [Ki,Mi] = getFOMmatrices(µi)
6: Kr = V Tg KiVg; Mr = V Tg MiVg
7: [Xr, λr] = eig(Kr,Mr, 1

stmode)
8: ri = KiVgXr −MiVgXrλr
9: end for

10: [MaxR, ID] = max(r)
11: [V(µID),∼] = eig(K,M)(µID)
12: Vg = VgV(µID)
13: end while
14: end function

Table 3.2. Greedy approach based on the residual of one eigenvector [5].

Figure 3.2. Gantry bridge of the laser-cutting machine [4].

is described as a network of beams to which lumped mass and stiffness are attached where
motors and laser head are located.

If materials and topology of the structure are already selected, optimization and analysis
of dynamic characteristics concern the cross-sections of the beams only. In this model, 3
cross-sections are used to model the different trusses (figure 3.3) and they are assembled in a
way to ensure good compatibility for welding. There is a rectangular cross section described
by h, w and 2 other squared cross-sections one of edge h and one of edge w. All beams
are hollow and the wall thickness is t. The material is assumed steel and the structure is
constrained in four nodes allowing only translation along the rails (y-axis).

7.1 Preprocessing and detailed parametric model generation

The gantry is modelled using 1836 DOF and the matrices are generated using NX Nastran.
As discussed in section 5.3, the parameter variation should not affect the mesh topology; the
number of elements and their connectivity should not change between one configuration and
the other.

The equations listed in table 5.3 are rearranged and simplified according to the parameters
of interest to generate the set of independent affine functions. It was mentioned that if the
gathered functions contain redundant information, numerical issues might occur resulting



A Parametric Model Order Reduction for simulations of beam-based structures 57

h 

w 

a) 

y 

z 

b) 

c) 

Figure 3.3. Gantry bridge of the laser-cutting machine [4].

in poor quality of the result. An example of this issue is given here considering the cross-
sectional areas adopted in the truss: being AR, AH , AW cross-sectional rectangle, square of
edge h and square of edge w respectively.

Original functions Independent
functions

AR = 2(ht+ wt− 2t2)
th tw t2AH = 4(th− t2)

AW = 4(tw − t2)

Table 3.3. List of functions retrieved according to 5.3 and derived unique monomials [4].

One may notice that for small wall-thickness with respect to the other dimensions, they
are numerically linearly dependent and they reduce to

AR ≈ 1/2AH + 1/2AW .

The issue is solved by making the monomial decomposition of the three functions (table 3.3)
as discussed in section 5.3.
When the set of basic functions is complete, the sampling has to be done in order to apply the
LS method. The result of the LS method provides the matrices of coefficients for the affine
representation of the model as in equation (3.17). The affine model is generated using a high
number of sampling points and gives good results in terms of accuracy as shown in figure 3.4
where, a collocated frequency response function (FRF) at the left motor is shown.

7.2 PMOR using the greedy algorithm

The greedy algorithm presented in section 6 yields the required accuracy in 8 iterations. The
resulting ROB counts 195 generalized coordinates. In figure 3.5, the representation of the
sample points selected through the greedy algorithm is given.
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Figure 3.4: Configuration of the motor. Collocated FRF. The representation is split in two.
Above the Transfer Function (TF) obtained with the matrices of Nastran is plotted with the
TF obtained with the unreduced parametric mode [4].
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Figure 3.5: The prism represents the parameter domain that is gridded and used to construct
the global ROB through the greedy algorithm presented in section 6. The enumerated points
represent the parameter configuration selected by the greedy algorithm at each iteration [5].

To assess the reduction accuracy, a number of parameter configurations is taken and com-
pared with the result of the full order model. In figure 3.6 the decay of the residual and of
the actual error are plotted in logarithmic scale. Although the results seem very promising, it
should be underlined that, the error in figure 3.6 only accounts for the error committed on the
eigenvalue and not the error on the eigenvectors. Figure 3.7 shows the collocated frequency
response functions for the load case described and for all the parameters of the model; the
smooth variation of the response functions with the parameters is a good indication of a small
Kolmogorov n-width for the manifold associated with the problem. Finally in Figure 3.8, the
error between the FRFs computed with the ROM and the FOM are plotted.

The good results for eigenvalues of Figure 3.6 could be expected as they are aligned with
the theoretical discussion of section 6.2. Nevertheless, the error representation of Figure 3.8
shows that also the FRF can be represented very accurately in the chosen parameter range.

7.3 Conclusions

In this chapter, a methodology for parametric model order reduction (pMOR) of a FE model
consisting of beam elements is presented. The method consists of two parts; in the first, an
affine representation of the FE model, based on mechanics of material and beam theory, is
retrieved; in the second part, a global ROB is generated using an originally developed greedy
algorithm based on normal modes for the parameter range to be investigated. The size of
the resulting parametric ROM is completely independent from the size of the original model
and, if the problem to be investigated presents a small Kolmogorov n-width, good trade-off
between accuracy and reduction is obtainable.

An important benefit of the presented methodology is the capability of accounting for
multi-parameter variations during simulation, without recurring to expensive interpolations
of the FE model or generic polynomials of high order, because both interpolations of the FE
and generic polynomials scale badly with the number of parameters. Moreover, a general set
of polynomial functions might bring numerical issue in the implementation of the LS method
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Figure 3.6. Normalized value of the actual error and of the residual at each iteration [5].
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Figure 3.7: Collocated frequency response functions of the gantry bridge at the centre point
where the load is imposed. Each response function line is generate using the ROM and
corresponds to a different parameter configuration in the range of interest [5].
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[5].

employed in this work.
The error estimator developed in section 6 allows an interesting implementation of the

greedy algorithm when eigenvector basis are used. In fact, the greedy approach to construct
the basis offers some accuracy estimation before simulation otherwise unavailable for purely
modal basis. Therefore, the proposed methodology sums up the advantages of incremental
improvements offered by the greedy algorithm to the popular modal reduction techniques.

Some of the theoretical investigations made through the chapter have been further anal-
ysed by means of the numerical example reflecting the potential of the methodology. Never-
theless, a number of further improvements will be presented in future research. The tempo-
rary global ROB is updated with a full local ROB at each iteration of the greedy regardless
of the fact that not all the new vectors being added may be needed to improve the solution.
Including only the strictly necessary vectors would allow a finer optimization of the number
of generalized coordinates with improvements in memory management and performances of
the simulation.
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Chapter 4

Equivalent modelling of sandwich
beams
SOPHIE DE RIJK, EUGÈNE NIJMAN

VIRTUAL VEHICLE RESEARCH CENTER

1 EXECUTIVE SUMMARY

The main findings of ESR4 are detailed in the journal article: Equivalent material modelling
of sandwich beams, evanescent solutions and damping investigations which has been ac-
cepted for publication in the Elsevier Journal of Sound and Vibrations, as of June 2016 [1].
In this chapter, the main principles and findings of the method developed by the fellow during
the eLiQuiD project are shown.

2 INTRODUCTION

As legal and public pressure is increasing for having fuel efficient vehicles, engineers are
pushed to design lighter structures. To reach lightweighting targets, the use of sandwich
structures is one of the paths under investigation by automobile, train or aerospace industries.
Such multi-material structures however bring along new challenges in terms of modelling,
especially in the dynamic range. The multiple mechanisms involved in the vibrations propa-
gation and damping in such structures require good understanding and, in term, sensible and
computationally efficient modelling techniques. As a multilayered system, sandwich struc-
tures quickly become very demanding in computing power for numerical dynamic simula-
tions, for instance with Finite Element Analysis (FEA). Having faster modelling techniques
would allow to iterate more easily and efficiently on designs of structures based on simulation
results. As a response to this need, the idea has risen in the literature to model multilayered
systems with a single equivalent material by matching the propagating part of the solution
and, in most cases, considering simply supported boundary conditions for which the eigen-
frequencies are sought to be matched. The study performed here however showed that the
evanescent part of the transverse vibrations solution, which represent local deformations at
the structure’s boundaries, are of importance to properly represent the loads at the bound-
aries. The boundary loads are necessary to model the transmission of vibrations between the
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various parts of a structure. Another subject that was addressed is the modelling of damping
in the structure, which in turn, also depends on the deformation fields at the boundaries. The
research performed has focussed on using Timoshenko beam theory (first order shear theory
for beams) for the equivalent modelling of transverse vibrations.
The fellow first sought for the current knowledge on the dynamics of sandwich and Timo-
shenko beams, shear stiffness of laminates and damping. Based on that knowledge, a new
methodology was developed to construct an equivalent Timoshenko beam to represent a sand-
wich beam. This new methodology includes updated evanescent field considerations, shear
stiffness description and damping modelling. The performance of the new model was then
thoroughly studied through various analytical examples and the specific advantages and limi-
tations of the methodology recorded, described and interpreted. Experimental measurements
were also conducted on a reference case and compared to the model’s predictions. The as-
sessment of the accuracy of the model was based on comparing the location of eigenfrequen-
cies and the width of the peaks in the frequency responses computed for the modelled and
measured beams.

3 STATE OF THE ART OF SANDWICH BEAMS DYNAMICS

During the study conducted, the reference theory describing undamped sandwich structures
used was that of Nilsson and Nilsson [2]. This theory considers the total bending stiffness
of the layup Dtot, the transverse shear stiffness of the core Ds and the individual bending
stiffness of the face sheets about their own mid plane Df . The rotary and transverse inertias,
Iρ and µ are also included.

The governing equations are then given by:

−Ds

(
∂2W

∂x2
− ∂ψ

∂x

)
+ 2Df

(
∂4W

∂x4
− ∂3ψ

∂x3

)
+ µ

∂2W

∂t2
= 0 (4.1)
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W is the deflection of the beam and ψ the angle of rotation of the cross section about the
sandwich’s neutral axis.

Based on these governing equations, Nilsson and Nilsson derive the dispersion equation:
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(4.3)

3 separate solutions for the wavenumber κx can be obtained from the dispersion relation
in Eq. (4.3). The first wavenumber solution κ1 represents the propagating solution. At low
frequencies, it represents pure bending, at mid-frequencies shearing and at higher frequencies
the individual bending of the face sheets about their own mid plane. The second wavenumber
κ2, is composed an evanescent solution at low frequencies and a propagating solution beyond
a limit frequency flim given by:

flim =
1

2π

√
Ds

Iρ
(4.4)
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Below the limit frequency (4.4) κ2 gives a slowly decaying evanescent solution composed of
a superposition of total bending and core shearing. Above the limit frequency, κ2 gives the
anti-phase superposition of total bending and shearing in the core. This superposition gives
no transverse motion of the beam but can be seen as the rotation of the cross sections and
local tension-compression in the face sheets. The third wavenumber κ3 solution is a short
decay exponential solution comprising bending and shearing. Figure 4.1 shows the various
wavenumber solutions for a 15 mm thick aluminium sandwich beam with 1 mm face sheets.

Figure 4.1: Solutions to the dispersion relation following Nilsson and Nilsson [2] with as-
sociated deformations of a 15 mm thick aluminium sandwich beam with 1 mm face sheets
[1].

A visualisation of the deformation generated by each part of the dispersion can be ob-
tained by decomposing the total deflection and rotation of the sandwich beam into the terms
associated to the individual wavenumber solutions as illustrated in Figure 4.1

4 EQUIVALENT MATERIAL MODEL

As the equivalent model is meant to be used for accelerating FEA simulations, the avail-
ability of elements following the chosen beam theory for the model is an important factor.
Timoshenko beam theory is used in shell elements commonly available in commercial FEA
packages but still integrates considerations such as transverse shear and rotary inertia, which
are important for describing sandwich beams. Therefore, Timoshenko was deemed a reason-
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able choice of theory to use for our equivalent model of a sandwich beam, which itself is
assumed to follow Nilsson and Nilsson’s [2] governing equations. The governing equations
for a Timoshenko beam are given by [3]:

−Dst

(
∂2W

∂x2
− ∂ψ

∂x

)
+ µt

∂2W

∂t2
= 0 (4.5)
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Which yields a 4th order dispersion equation:
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where µt is the mass per unit length, Iρt the rotary inertia, Dst is the transverse shear
stiffness and Dbt the bending stiffness.

The equivalent material’s Young’s modulus, shear modulus and density were then chosen
to match the mass per unit length, transverse shear stiffness and bending stiffness term of the
sandwich material. One of the novelties of this study was to introduce an equivalent beam’s
thickness other that the total sandwich thickness in order to match the rotary inertia term and
hence the second wavenumber solution κ2 as shown in Figure 4.2:
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Figure 4.2: Dispersion solutions for a 15 mm aluminium honeycomb sandwich beam with 1
mm face sheets compared to equivalent Timoshenko solutions either matching Htot and µ or
Iρ and µ [1].

4.1 Transverse shear stress distribution and correction factors

Shear stress distributions in sandwich beam structures can be quite complex and cause warp-
ing of the cross sections. In first order shear theory, this is simplified by considering a uniform
stress distribution corrected by a shear correction factor. Nilsson’s theory [2], only considers
the shear stiffness of the core and no shear correction factor is used to account for warping.
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A shear correction factor was added to the methodology developed here. This shear cor-
rection factor was however a simplified static correction factor as the reality in the dynamic
range is far more complex due to rotary inertia effects. Maheri and Adams [4] for instance
have shown that the dynamic shear correction factor is frequency and boundary condition
dependent. As the aim of the research was to develop a method as generic as possible for
acceptable complexity, only a static shear correction factor was used, expecting that signif-
icant deviations would only appear in the higher frequency range. The newly considered
shear stiffness includes the shear stiffness of the face sheets, to cover cases where the latter
are not of negligible thickness and a global shear correction factor κs was computed follow-
ing the method presented in [5]. The shear stiffness can also be expressed separately for the
facesheets and the core with their respective correction factors:

κs

3∑
i=1

Gihi =

3∑
i=1

κsiGihi (4.8)

with Gi, hi and κsi the shear modulus, the thickness and the shear correction factor of each
layer respectively.

This approach was used to distinguish the contributions of each layers to later quantify
their respective effect on global damping of the structure.

4.2 Damping

Determining the damping in the sandwich layup and applying it to its equivalent Timoshenko
beam was one of the key points of the research. In FEA, damping is applied with a single
loss factor η in the form of Et = E∗t (1 + iηtot) and Gt = G∗t (1 + iηtot), E∗t and G∗t are
the undamped moduli. A single equivalent loss factor therefore needed to be defined based
on the different loss factors of the face sheets and the core. The method presented by [6]
was used to compute the total loss factor as the ratio between dissipated energy and potential
strain energy.

ηtot =
Ediss

2πEpot
(4.9)

The dissipative parts of the motion considered were the elongation in the face sheets due
to bending and the transverse shearing in the face sheets and core.

5 ANALYTICAL PERFORMANCE EVALUATION

The performance of the model was then assessed with analytical examples. Two sandwich
beams of total thickness of 30 mm were studied. The aluminium face sheets were of 1 mm
or 5 mm thickness. The cores were aluminium honeycombs. The first example represented
a typical case. The second was a limit case with high relative importance of the Df term to
show the limits of the equivalent Timoshenko beam model. Two different ways of accounting
for damping were implemented in the equivalent material. The first, which is only possible
analytically, considered the damping in the face sheets and the core separately. The second,
which was representative of what one would do in FEA, used a single damping coefficient for
the full system. This was done to better asses the accuracy of the model form the undamped
and the damped point of view. The input mobilities of the Nilsson [2] sandwich beam and
the equivalent Timoshenko beam model were then compared as shown in Figure 4.3.



68 FP7 Marie Curie EID eLiQuiD (GA 316422)

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Frequency [Hz]

M
o
b
ili

ty
 [
(m

 s
−

1
) 

N
−

1
] 

 

 

1/30mm Nilsson
1/30mm Timoshenko damping by parts
1/30mm Timoshenko equivalent damping

Figure 4.3: Input mobility for 30 mm thick sandwich beams with 1 mm face sheets and its
equivalent Timoshenko beams [1].

The various types of motions and deformations (total deflections (W ), the total cross
section rotations (ψ) and the shear angle (γ)) were then decomposed by wavenumber solution
contributions at chosen resonances to better understand the differences between the reference
sandwich model and equivalent material model as shown in Figure 4.4.
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6 EXPERIMENTAL STUDY

Experimental investigations were made on a 30 mm thick sandwich beam. The face sheets
were 1 mm thick aluminium sheets, the core is an aluminium honeycomb. The beam was
excited at one end with an impact hammer and the velocity response were measured at the
other end thanks to a laser vibrometer as depicted in Figure 4.5. The beam was placed on soft
foam blocs in two points for support.

Figure 4.5: Experimental setup with a 30 mm aluminium sandwich beam supported on foam
pads, excited by impact hammer and the velocity response measured by means of a laser
vibrometer [1].

As the measured sandwich beam had a rather thick bonding layer between the face sheets
and the honeycomb core, the equivalent material model was updated to include the effect
of this bonding layer both in stiffness and damping. The experimental results were then
compared to a detailed FE model to verify the accuracy of the estimated material properties
of the various components of the layup, Nilsson sandwich analytical models and equivalent
Timoshenko models as shown in Figure 4.6.

7 GENERAL CONCLUSIONS

The first main observation was that the evanescent parts of the dispersion solutions, which
were not considered by researchers in the past, actually had a visible influence on the beam’s
solutions and needed indeed to be considered to construct equivalent material models. Sec-
ondly, it was shown that it was possible to construct a single equivalent damping coefficient
for a sandwich beam, provided it is frequency dependent. The experimental work mainly
showed the importance of considering the influence of the bonding layer between the face
sheets and the core to construct an accurate model. Generally, it was shown that despite the
analysed limitations of the developed model, the results of both the analytical and experimen-
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tal studies proved to be very promising for using such an approach practically.
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eLiQuiD was funded by the EC as a Marie Curie European Industrial Doc-
torate under Grant Agreement 316422 in the Seventh Framework Programme
(FP7) and ran over a period of 4 years (October 2012 – September 2016). The
project brought together the Katholieke Universiteit Leuven (KU Leuven) as
academic partner, Virtual Vehicle Research Center (ViF) as industrial research
centre and the European Automotive Research Partners Association (EARPA)
as associated partner and together hosted 4 researchers, drawing together
skills and expertise in a range of different technical approaches. ViF and
EARPA brought specific applications that embed generic difficulties associ-
ated with NVH of electrified vehicles, while KU Leuven brought a diverse range
of innovative approaches and the capability of research training, provision of
courses and dissemination to the wider community. Together the consortium
developed and promoted research, knowledge and application of NVH analysis
and design techniques within the EU industry.

Near the end of the 4-year eLiQuiD project, each of the 4 Fellows has writ-
ten a self-assessment report. This book collects these public domain reports,
providing an insight in the theoretical development of each of the approaches
studied within eLiQuiD and giving an assessment on their industrial applica-
bility, on open research questions and future challenges. The authors hope
that these reports may help others in tackling the substantial challenges still
existing in NVH assessment of electrified vehicles.


